

Innovative food products

Risks-Benefits assessment of the substitution of beef by insects in burgers in Europe

Dr. Géraldine Boué, Associate professor at ONIRIS / INRAE, France

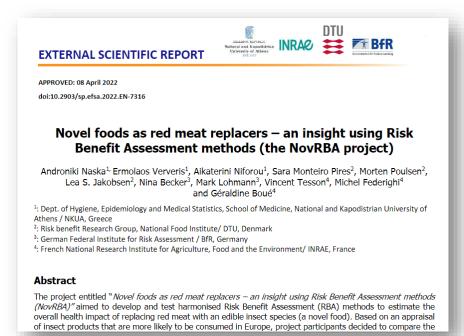
Content

- Introduction
- Model structure and simulation
- Food intake estimates
- Individual Risks and benefits assessments:
 - Nutrition
 - Toxicology
 - Microbiology
- Health impact estimate and scenarios comparison
- Main limitations and conclusions

Introduction

- NovRBA Project, 2019-2022, Novel foods as red meat replacers an insight using Risk Benefit Assessment methods
- □ Knowledge exchange grant, EFSA-Q-2022-00244
- Partnairs:Coordinated by Prof. Androniki Naska (NKUA)
 - NKUA (Greece), School of Medicine of the National and Kapodistrian University of Athens, including
 Ermolaos Ververisis as part of his PhD thesis
 INRAØ
 - INRAE (France) National Research Institute for Agriculture, Food and the Environment
 - DTU (Denmark) National Food Institute
 - BfR (Germany) German Federal Institute for Risk Assessment

UNIVERSITÀ



Introduction

SUMMER SCHOOL

- Report available EFSA Journal 2022;19(5):EN-7316
- Main content:
 - The RBA case study on Insect burger
 - Methodological improvements in RBA
 - RBA communication

Introduction

Objective:

To design and implement RBA models to estimate the overall health impact

of red meat replacement by the identified insect species

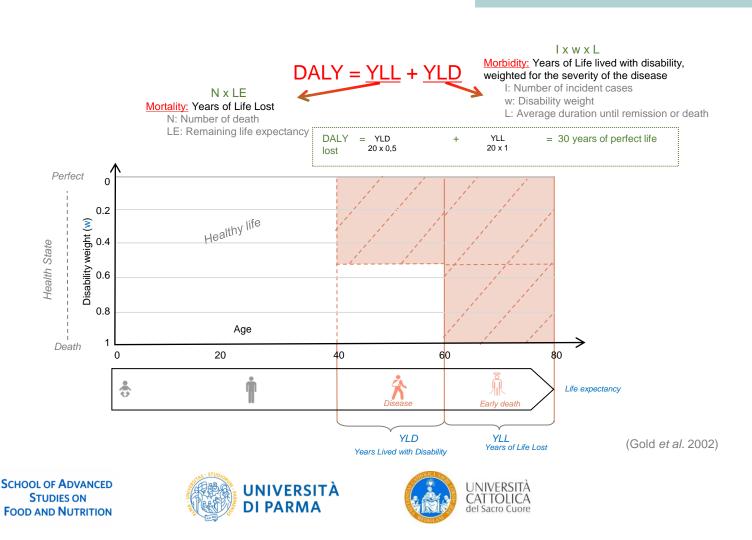
• Assess the consumers' exposure to the selected components (nutrients +

microbial and toxicological hazards) for reference (beef patty) and alternative

(Acheta domesticus powder) scenarios

• **Develop and implement a RBA model** to estimate the overall health impact

of this substitution to compare scenarios


A

UNIVERSITÀ

DI PARMA

 Main output = Number of cases per disease and DALY when moving from reference to alternative scenarios, due to health outcomes associated to the following components, in Greece, France and Denmark

DALY = Disability adjusted life year1 DALY ≈ 1 year of perfect health lost

Nov RRA

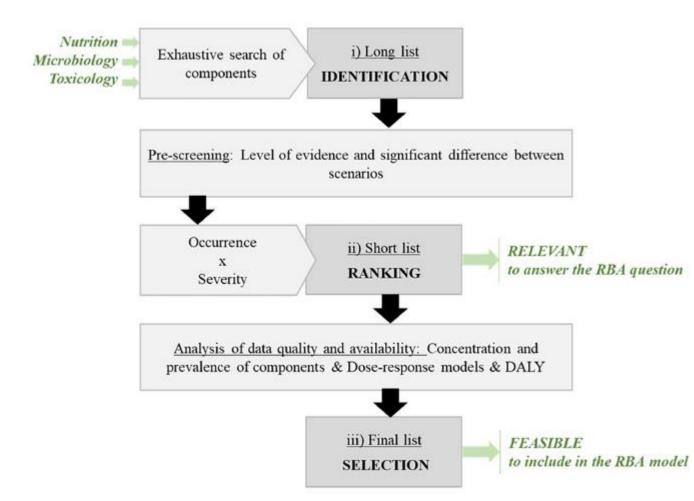
Rick Renefit Accessmen

Components identification:

- Insects (Novel Food): systematic literature search
- Beef (Traditional food): Key reviews, databases and reports for beef

SURAR SCHOOL

Innovative food products


A systematic review of the nutrient composition, microbiological and toxicological profile of *Acheta domesticus* (house cricket)

Ermolaos Ververis ^{a, b,*}, Géraldine Boué ^{e, d}, Morten Poulsen ^e, Sara Monteiro Pires ^e, Aikaterini Niforou ^a, Sofie Theresa Thomsen ^e, Vincent Tesson ^{e, d}, Michel Federighi ^{e, d},

Nutrients			Microbio	logical hazards	Chemical hazards	
	Crickets and beel	f	Crickets	Beef	Crickets	Beef
Macronutrients:	Vitamins:	Sterols:	Bacteria:	Bacteria:	POPs:	POPs:
Carbohydrates	Folate	Cholesterol	B. Cereus	B. Cerer	Total PCB (organochlorine	Total PCB
Fiber	Niacin	vino acids:	Campylobacter spp.	ψ.	compounds)	Dioxin + c ^{II}
Fiber IDF (insoluble)	Pantothenic and	ine hine	C. Botulinum	rims	Phosphorous flame	-16
Fiber SDF (soluble)	Reat:	ne/cysteine	C. perfrim	a sakazakii	retardants (PFR,	micars
Minerals:	AUITIC	Histidine*		EC	organochlor	eene, dieldrin,
Aluminum	Al Nutrien	Lysine*	Campylobacter spp. C. Botulinum C. perfri- 18 Nicroorg 	Listeria monocytogenes		emicals une, DDT) Metals:
Calcium	av III	Methionine*	18 wytogenes	Salmonella		Metals:
Chloride	Pyridoxine	Phenylalanine*	umonella	S. aureus (rare, human origin)	Pcaphenyl	(Methyl)mercury
Chromium	Vitamin C	Tryptophan*	S. aureus	Yersinia enterocolitica	eth (PBDE, flame	Cadmium
Copper	Vitamin D3 (Cholecalcifere	ol)	Vibrio sp.	Virus:	retardant)	Lead
Iodine	Vitamin E		Yersinia enterocolitica	Hepatitis E	Metals:	Inorganic arsenic
Iron	(alpha-Tocopherol)		Virus:	Norovirus (human origin)	Mercury	Aluminum
Magnesium	Fatty acids:		HVA	Rotavirus (human origin)	Cadmium	Nickel
Manganese	Total MUFAs		Norovirus	Parasites:	Lead	Chromium
Potassium	Total PUFAs		Metabolites:	Cryptosporidium spp. (veals)	Inorganic arsenic	Pesticides:
Selenium	Total n-3 fatty acids		Histamine	Toxoplasma gondii	Aluminum	[organochlorine compounds
Sodium	Total n-6 fatty acids				Nickel	listed above]
Sulfur	Total SFA				Chromium	Neoformed compounds or
Zinc					Pesticides:	process contaminants:
					(presence of 10 pesticides)	PAH

□ Components selection:

Frontiers | Frontiers in Nutrition

SUMMER SCHOOL

Innovative food products

TYPE Original Research

PUBLISHED 20 October 2022

por 10.3389/fnut.2022.951369

OPEN ACCESS

EDITED BY Sandra Regina Salvador Ferreira, Federal University of Santa Catarina, Brazil

REVIEWED BY Simone Belluco, Experimental Zooprophylactic Institute of the Venezie (IZSVe), Italy Marta Laranjo, University of Evora, Portugal

*CORRESPONDENCE Géraldine Boué

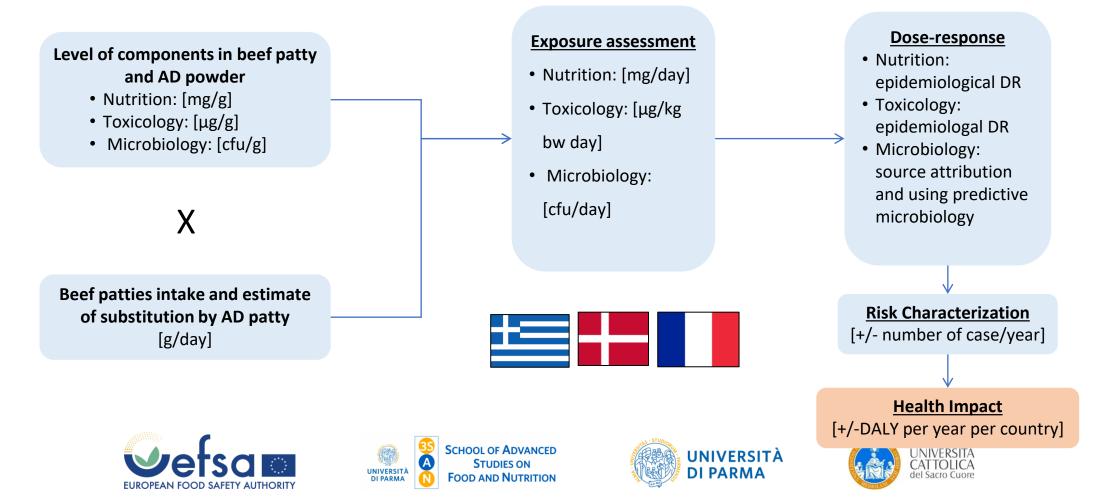
geraldine.boue@oniris-nantes.fr

This article was submitted to Nutrition and Food Science Risk–Benefit assessment of foods: Development of a methodological framework for the harmonized selection of nutritional, microbiological, and toxicological components

Géraldine Boué^{1*}, Ermolaos Ververis^{2,3}, Aikaterini Niforou², Michel Federighi^{1,4}, Sara M. Pires⁵, Morten Poulsen⁵, Sofie T. Thomsen⁵ and Androniki Naska²

SUMMER SCHOOL

Innovative food products


□Final list of components to be included in the RBA

	Nutrients		Microbiolog	ical hazards	C	hemical hazards					
	Crickets and beef		Crickets	Beef	Crickets	Beef					
Macronutrients: Carbohydrates Fiber Fiber IDF (insoluble) Fiber SDF (soluble)	Folate Niacin	Sterols: Cholesterol Amino acids: Alanine	Bacteria: B. Cereus Campylobacter spp. C. Botulinum	Bacteria: B. Cereus Campylobacter spp. C. perfringens	POPs: Total PCB (organoch compounds) Phosphorous flame	POPs: Total PCB Dioxin + dl-PCBs Organochlorine compounds	Ţ ↓ S	HORT LIS	ST		
Minerals: Aluminum Calcium		Nutrient	ŝ		Microbiolog	gical hazards		Chemical ha	azards		
Chloride Chromium Copper Iodine	AD	Be	ef	AD		Beef	AD	Bee	ef		
Iron Magnesium Manganese Potassium Selenium	Calcium Copper Fiber (including ch		n Icin, enium	Bacillus Cere Clostridium Clostridium	Botulinum	Clostridium perfringens Campylobacter spp. Listeria monocytoge <u>nes</u>	Inorganic	arsenic PAH	H		
Sodium Sulfur Zinc	Iron Magnesium	Soc	lium al saturated fatty acids	Cronobacter Listeria mon	sakazakii	Salmonella spp. S. aureus (enterotox	Nutrients	Microbiolo	ogical hazards	Cher	nical hazards
	Selenium Sodium		amin Cyanocobalamin amin D3	Salmonella s S. aureus (en		Toxoplasma gondii	AD and beef	AD	Beef	AD	Beef
	Total n-3 fatty acid Total n-6 fatty acid Zinc		ic				Calcium Fiber, insoluble fiber	Bacillus Cereus Clostridium perfringens	Clostridium perfringens Salmonella spp.	1	Inorganic arsenic
of a met	thodological framework fo gical components. Frontier	or the harmonized		robiological, and	CHOOL OF ADVANC STUDIES ON OOD AND NUTRITIC		Iron Magnesium Sodium Vitamin B12 Zinc	Cronobacter sakazakii Listeria monocytogenes Salmonella spp.	Toxoplasma gondii		

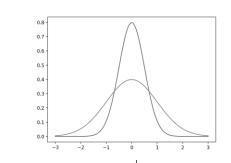
Innovative food products

□ Model split as a modular process

□ Monte Carlo simulations on @Risk, Version 7.6

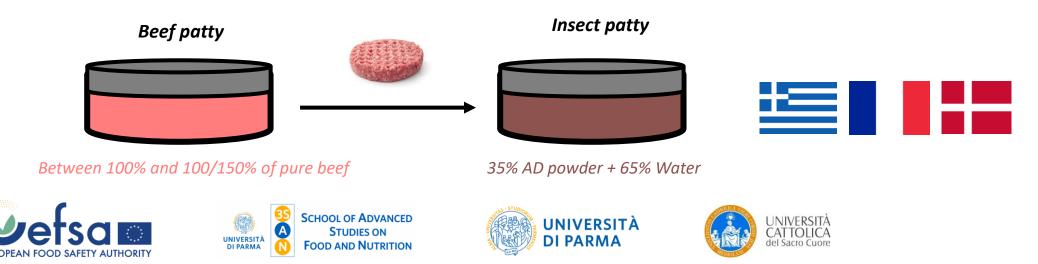
Main sources of variations considered in calculations:

EXPOSURE ASSESSMENT VARIABILITY


- Percentage of pure beef in patty
- Individual food intake
- Food nutritional composition
- Concentration of hazards in food when contaminated

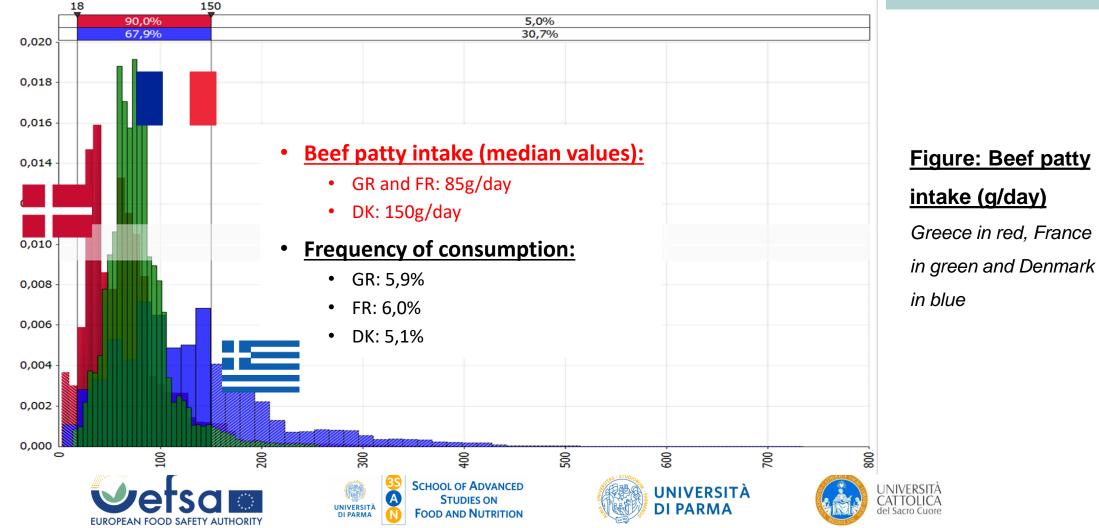
X

- Dose-responses
- Incidence of disease
- DALY/case



FOOD INTAKE ESTIMATE

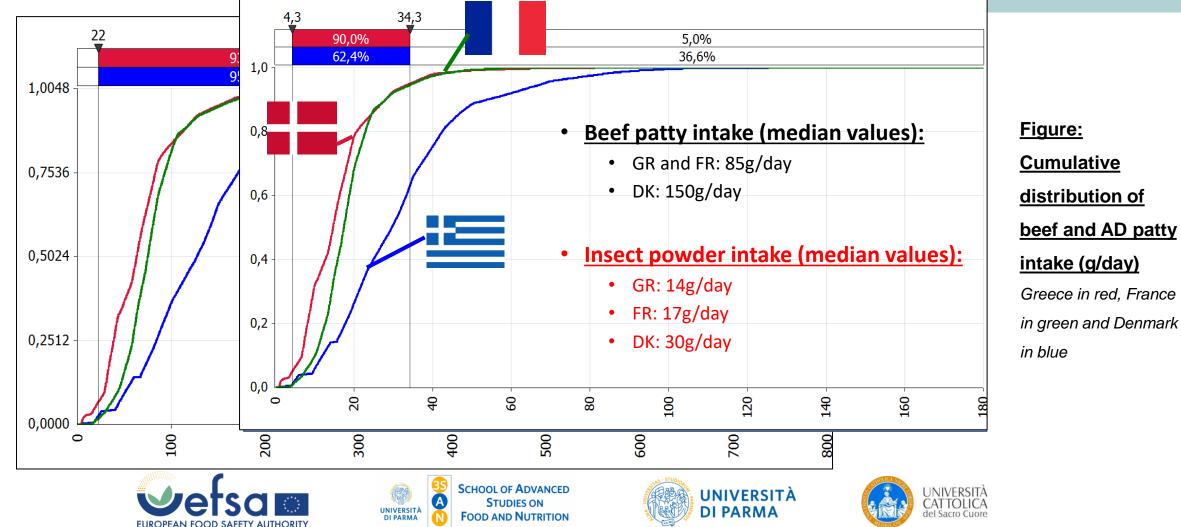
- Reference scenario: Beef patty consumption data from national dietary surveys of each country
 - Assumption that 150g of beef patty contains between 100 and 150g of pure beef
- Alternative scenario: Insect powder consumption estimations
 - Iso-weight substitution with rehydrated insect powder
 - Ratio of rehydration assumed to be 35:65 powder to water, to provide a suitable texture for replacement
 - The powders used derive from a process including a boiling step for 5 minutes at 100°C


SUMMER SCHOOL

Innovative food products

Nov RRA

Risk Benefit Assessmen


FOOD INTAKE ESTIMATE

SURAR SCHOOL

FOOD INTAKE ESTIMATE

Nov RBA Risk Benefit Assessment

Nutrition

• Exposure assessment = Food intake x Nutrient concentration

			GREI	ECE	DENN	ЛARK	FRA	NCE
	INCREASE		Ref scenario	Alt	Ref	Alt	Ref	Alt scenario
			her seenano	scenario	scenario	scenario	scenario	Alle Sechario
	Calcium	mg/day	7.38	28.22	14.85	56.75	8.62	32.95
	Copper	mg/day	0.05	0.57	0.09	1.14	0.05	0.66
	Crude fiber	g/day	0.00	1.15	0.00	2.32	0.00	1.35
	Iron	mg/day	1.71	1.02	3.45	2.05	2.00	1.19
	Magnesium	mg/day	13.66	17.61	27.46	35.38	15.94	20.55
	Selenium	mg/day	0.01	0.01	0.01	0.02	0.01	0.01
/ /	Sodium	mg/day	40.96	36.01	82.30	72.41	47.77	42.03
	Total n-3 fatty acids	g/day	0.06	0.01	0.12	0.02	0.07	0.01
	Total n-6 fatty acids	g/day	0.16	0.18	0.33	0.36	0.19	0.21
	Total polyunsaturated fatty acids	g/day	0.30	0.64	0.61	1.28	0.35	0.74
	Total saturated fatty acids	g/day	3.08	1.01	6.19	2.03	3.60	1.18
	Vitamin B12 (Cyanocobalamin)	mg/day	0.001	0.000	0.003	0.000	0.002	0.000
	Zinc	mg/day	3.04	2.74	6.11	5.50	3.54	3.19

Uniform distributions between MIN and MAX collected for:

Raw minced beef: FR and DK composition databasesAD powder: International

scientific literature

INDIVIDUAL RISKS AND BENEFITS ASSESSMENTS Innovative food products **InvRRA**

Nutrition

• Exposure assessment = Food intake x Nutrient concentration

		GRE	ECE	DENN	MARK	FRA	NCE
DECREASE		Ref scenario	Alt	Ref	Alt	Ref	Alt scenario
Calcium	mg/day	7.38	scenario 28.22	scenario 14.85	scenario 56.75	scenario 8.62	32.95
Copper	mg/day	0.05	0.57	0.09	1.14	0.02	0.66
Crude fiber	g/day	0.00	1.15	0.00	2.32	0.00	1.35
Iron	mg/day	1.71	1.02	3.45	2.05	2.00	1.19
Magnesium	mg/day	13.66	17.61	27.46	35.38	15.94	20.55
Selenium	mg/day	0.01	0.01	0.01	0.02	0.01	0.01
Sodium	mg/day	40.96	36.01	82.30	72.41	47.77	42.03
Total n-3 fatty acids	g/day	0.06	0.01	0.12	0.02	0.07	0.01
Total n-6 fatty acids	g/day	0.16	0.18	0.33	0.36	0.19	0.21
Total polyunsaturated fatty acids	g/day	0.30	0.64	0.61	1.28	0.35	0.74
Total saturated fatty acids	g/day	3.08	1.01	6.19	2.03	3.60	1.18
Vitamin B12 (Cyanocobalamin)	mg/day	0.001	0.000	0.003	0.000	0.002	0.000
Zinc	mg/day	3.04	2.74	6.11	5.50	3.54	3.19

Uniform distributions between MIN and MAX collected for:

> - Raw minced beef: FR and DK composition databases - AD powder: International

scientific literature

INDIVIDUAL RISKS AND BENEFITS ASSESSMENTS

Nutrition Breast cancer Dose-Response CHD Colorectal cancer Crohn's disease Calcium Fiber CVD Diabetes mellitus type II Iron NUTRITION Magnesium Gastric cancer Sodium Oesophageal cancer Vitamin B12 *Increase: Ref->Alt* Ovarian cancer Zinc Decrease: Ref-Pancreatic cancer >Alt Prostate cancer stroke SCHOOL OF ADVANCED UNIVERSITÀ

A

UNIVERSITÀ

DI PARMA

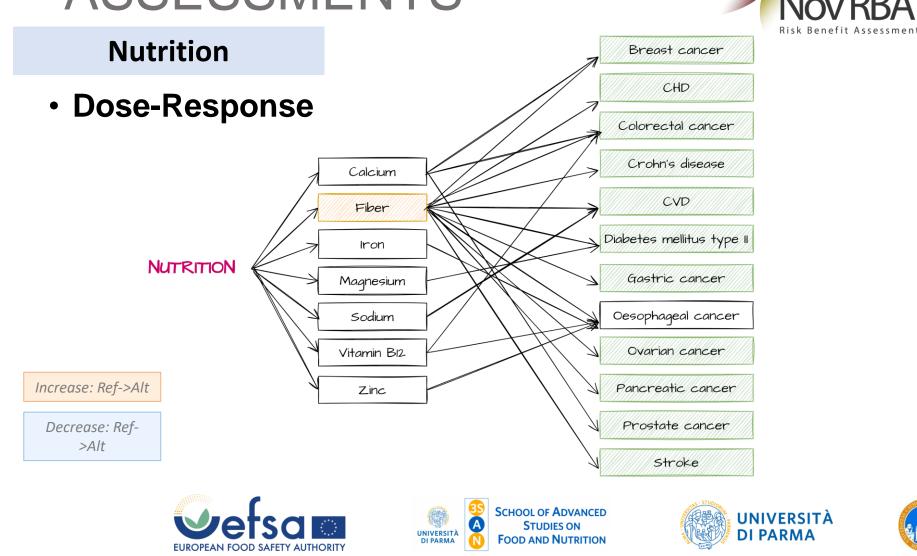
STUDIES ON

FOOD AND NUTRITION

Epidemiological dose-responses

Risk Benefit Assessment

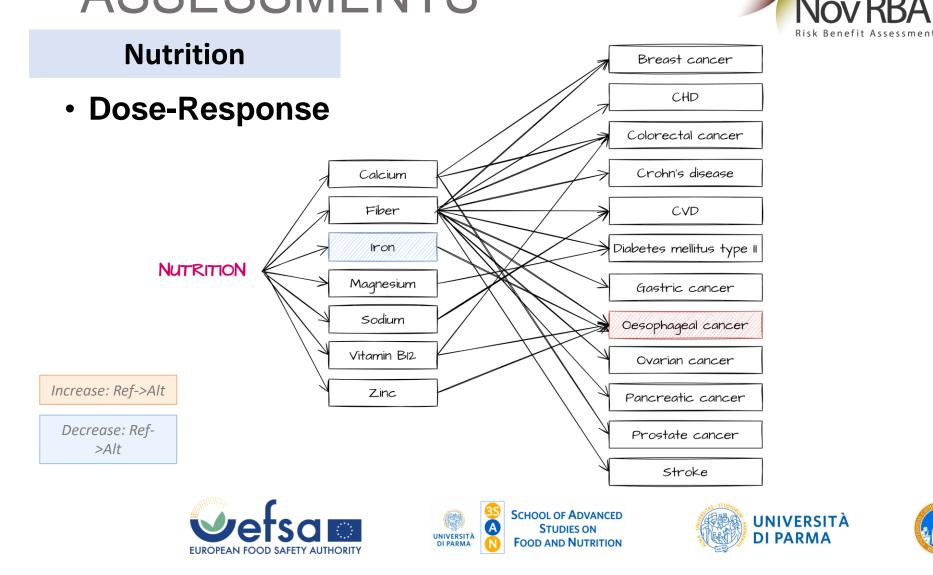
DI PARMA


SUMMER SCHOOL

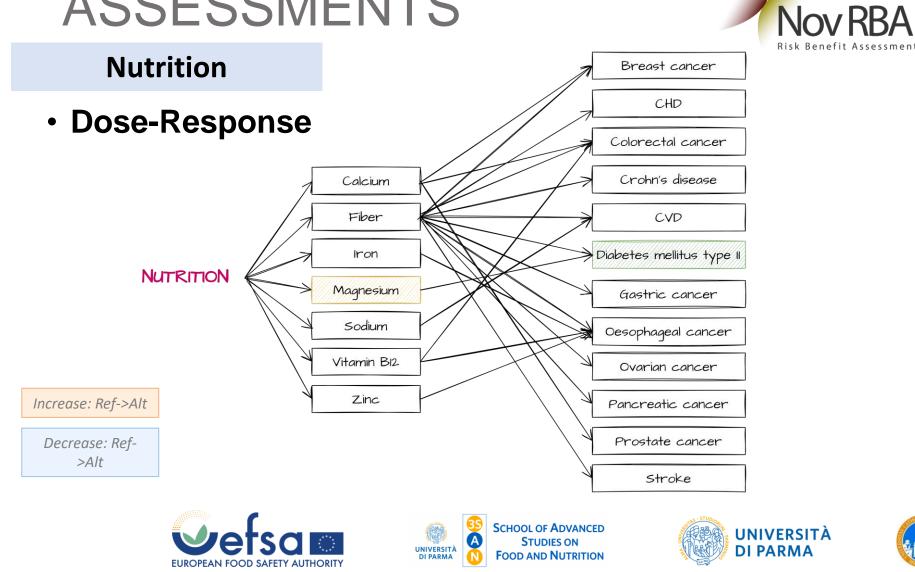
Nutrition Breast cancer Dose-Response CHD Colorectal cancer Crohn's disease Calcium CVD Fiber Diabetes mellitus type II Iron NUTRITION Gastric cancer Magnesium Oesophageal cancer Sodium Ovarian cancer Vitamin B12 *Increase: Ref->Alt* Pancreatic cancer Zinc Decrease: Ref-Prostate cancer >Alt stroke SCHOOL OF ADVANCED UNIVERSITÀ A **STUDIES ON DI PARMA** UNIVERSITÀ **FOOD AND NUTRITION DI PARMA** EUROPEAN FOOD SAFETY AUTHORIT

BENEFIT RISK

Risk Benefit Assessment



BENEFIT


RISK

BENEFIT RISK

UNIVERSITÀ CATTOLICA

lel Sacro Cuore

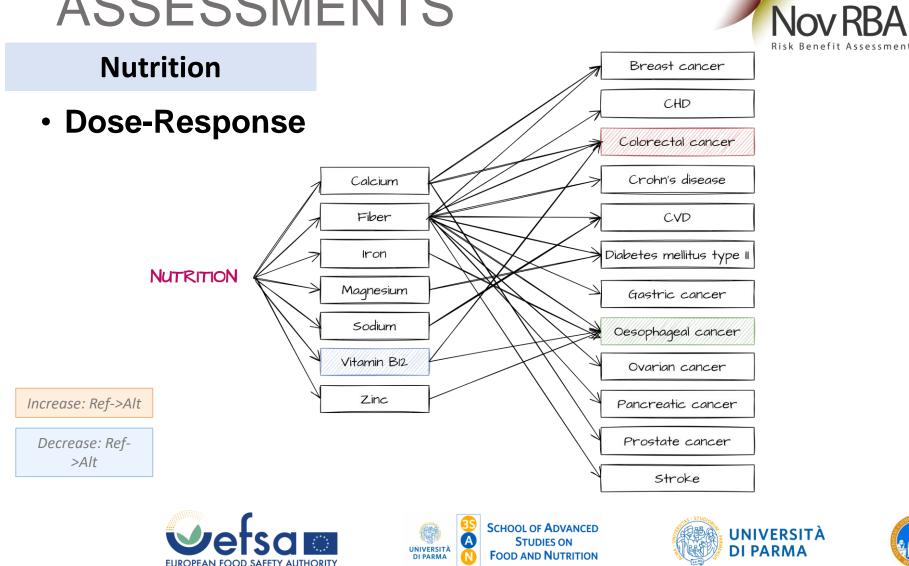
UNIVERSITÀ CATTOLICA del Sacro Cuore

BENEFIT

RISK

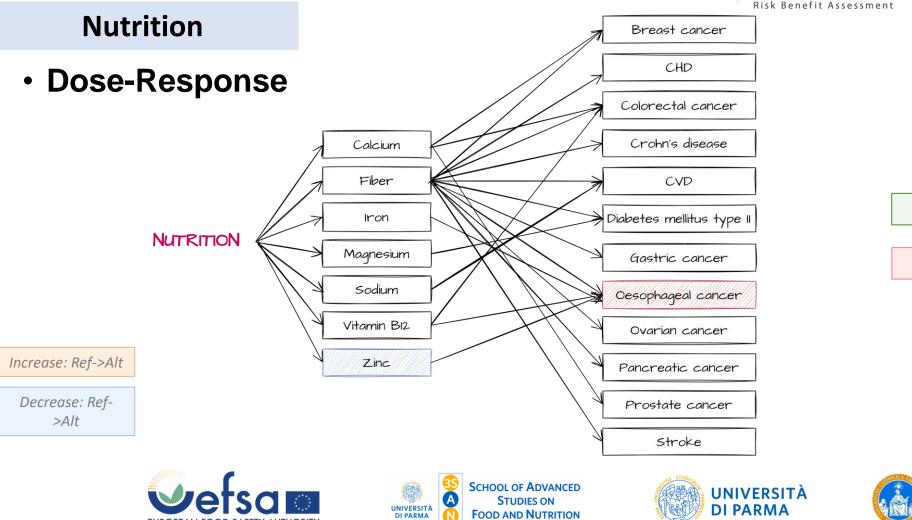
Nutrition Breast cancer Dose-Response CHD Colorectal cancer Crohn's disease Calcium CVD Fiber Diabetes mellitus type II Iron NUTRITION Magnesium Gastric cancer Sodium Oesophageal cancer Vitamin B12 Ovarian cancer *Increase: Ref->Alt* Zinc Pancreatic cancer Decrease: Ref-Prostate cancer >Alt Stroke SCHOOL OF ADVANCED UNIVERSITÀ A **STUDIES ON DI PARMA** UNIVERSITÀ **FOOD AND NUTRITION**

DI PARMA


EUROPEAN FOOD SAFETY AUTHORITY

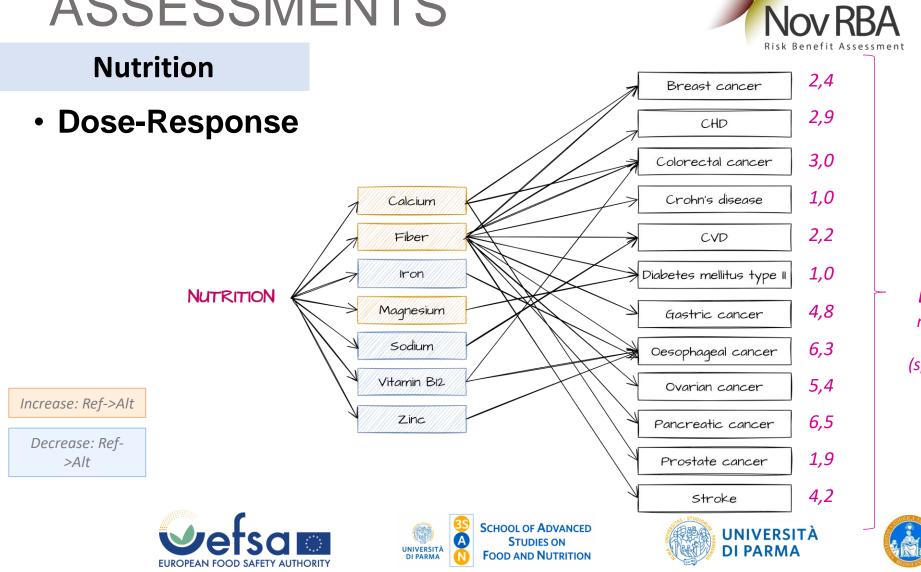
BENEFIT RISK

Risk Benefit Assessment


INDIVIDUAL RISKS AND BENEFITS SURPRISE ASSESSMENTS

BENEFIT

RISK



BENEFIT

RISK

INDIVIDUAL RISKS AND BENEFITS ASSESSMENTS

SUMMER SCHOOL

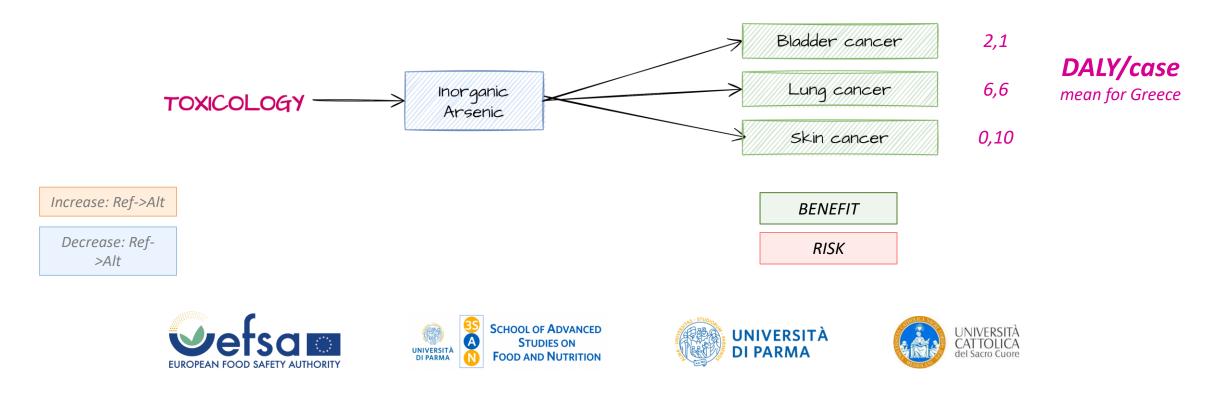
Innovative food products

DALY/case mean for Greece (specific values per country)

INDIVIDUAL RISKS AND BENEFITS ASSESSMENTS Novrba

Innovative food products

Nutrition


- Health impact in DALY
- Total DALY saved (-) or lost (+) when moving from Reference to Alternative scenario (per 100.000 population)

	Greece	Denmark	France
Nutrition	-5,206	-2,360	-17,400
Calcium	0,08%	0,19%	0,16%
Fiber	15%	18%	15%
Iron	0,06%	0,39%	0,36%
Magnesium	0,50%	0,24%	0,70%
Sodium	84%	80%	82%
Vit B12	0,71%	1,69%	1,28%
Zinc	0,03%	0,17%	0,16%
Jefsa DPEAN FOOD SAFETY AUTHO			VERSITÀ ARMA UNIVER CATTOL del Sacro

INDIVIDUAL RISKS AND BENEFITS ASSESSMENTS Novrba

Toxicology

- Inorganic Arsenic was considered in beef patty only
- Health impact in DALY
- Same method of calculation using epidemiological doseresponse

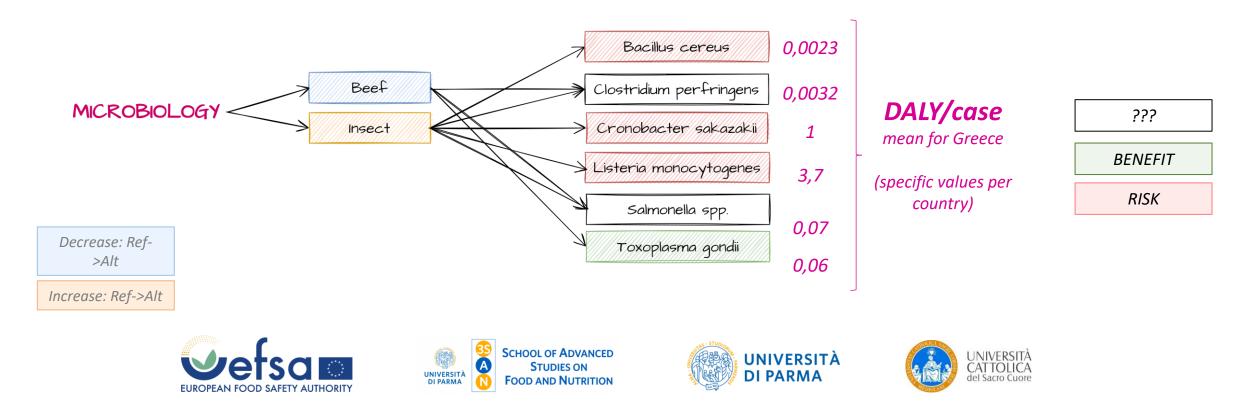
INDIVIDUAL RISKS AND BENEFITS S ASSESSMENTS Novrba

Innovative food products

Toxicology

• Total DALY saved (-) or lost (+) when moving from Reference to Alternative scenario (per 100.000 population)

	Greece	Denmark	France
Toxicology	-0,10	-0,11	-0,69
In Arsenic	100%	100%	100%



INDIVIDUAL RISKS AND BENEFITS ASSESSMENTS

Microbiology

• Hazards selected and associated DALY

Microbiology

• Total DALY saved (-) or lost (+) when moving from Reference to Alternative scenario (per 100.000 population)

		Greece	Denmark	France
	Microbiology	-3,520	-4,225	-4,305
	Clostridium perfringens	0,4%	0,3%	0,3%
Beef	Salmonella spp	2%	1%	1%
	Toxoplama gondii	88%	92%	92%
	Bacillus cereus	10%	6%	6%
	Clostridium perfringens	0,000002%	0,000003%	0,000002%
AD	Cronobacter sakazakii	0%	0%	0%
	Listeria monocytogenes	0%	0%	0%
	Salmonella spp	0%	0%	0%
		OF ADVANCED UDIES ON ND NUTRITION	UNIVERSITÀ DI PARMA	UNIVERSITÀ CATTOLICA del Sacro Cuore

HEALTH IMPACT ESTIMATE AND SCENARIOS COMPARISON

•	Change in DALY per	
	100 000 people	

	Greece	Denmark	France
Sum of DALY	-8,753 (-14,848 ; -4,595)	-6,572 (-13,444 ; -2,737)	-21,972 (-34,400 ; -12,613)
Nutrition	-5,206	-2,360	-17,400
Calcium	0,08%	0,19%	0,16%
Fiber	15%	18%	15%
Iron	0,06%	0,39%	0,36%
Magnesium	0,50%	0,24%	0,70%
Sodium	84%	80%	82%
Vit B12	0,71%	1,69%	1,28%
Zinc	0,03%	0,17%	0,16%
Toxicology	-0,10	-0,11	-0,69
Inorganic Arsenic	100%	100%	100%
Microbiology	-3,520	-4,225	-4,305
Beef - Clostridium perfringens	0,4%	0,3%	0,3%
Beef - Salmonella spp.	2%	1%	1%
Beef - Toxoplasma gondii	88%	92%	92%
AD – Bacillus cereus	10%	6%	6%
AD – Clostridium perfringens	0,000002%	0,000003%	0,000002%
AD – Cronobacter sakazakii	0%	0%	0%
AD – Listeria monocytogenes	0%	0%	0%
AD – Salmonella spp.	0%	0%	0%

MAIN LIMITATIONS AND CONCLUSIONS

SUMMER SCHOOL

Innovative food products

Important limitations

• Significant components and health outcomes that were not quantified in this RBA

	Nutrition	Microbiology
Components		
(not prioritised because of lack of	Copper, Phosphorus	Clostridium botulinum
dose-response data)		
	Colorectal adenoma (calcium, fiber)	
Health outcomes	Diverticular disease (fiber)	
(not considered because of lack	Gestational diabetes mellitus (iron)	
of information on DALYs)	Metabolic syndrome (calcium, magnesium)	

- Lack of data on Nutritional composition and prevalence of hazards in Novel Food (AD)
- Need to define substitution recipes of beef meat by AD powder in patty
- Incidence and DALY/case values of some health outcomes
- **Dose responses** for fatty acids

MAIN LIMITATIONS AND CONCLUSIONS

Innovative food products

□ Conclusions on the case study

- Overall health impact of the substitution is positive
- High contribution of nutritional impacts
- The overall microbiological impact is beneficial but risks associated with AD must be refined with data on occurrence and concentration and could be managed
- Conclusions must be read considering model limitations

□ Challenges of Novel Foods

- Lack of data -> systematic research is needed for each input
- Need to integrate data at the country scale
- Consideration of food substitutions in scenarios -> Survey
- <u>RBA considering substitution are necessary for Risk Assessment of Novel Foods</u> to ensure safety and beneficial nutritional substitution

Acknowledgement to the whole NovRBA team!

INRA

SUMMER SCHOOL

Innovative food products

Subscribe to

www.efsa.europa.eu/en/news/newsletters www.efsa.europa.eu/en/rss

Engage with careers

www.efsa.europa.eu/en/engage/careers

Follow us on Twitter

@efsa_eu @plants_efsa @methods_efsa

Dr. Géraldine Boué

Associate professor geraldine.boue@inrae.fr September 27th 2023

