

26 – 28 SEPTEMBER 2023

Innovative food products

Consumer Acceptance of Innovative Foods: The Role of Information

Dr. Vincenzina Caputo Associate Professor - Michigan State University

Building Sustainable Food Systems

Innovative food products

As the global population continues to grow, ensuring that we can feed everyone while minimizing the impact on the planet is a key priority! Some key innervations:

Innovative Foods and Information

- Focus today on...
 - Plant-based meat alternatives
 - Gene-editing on agricultural and food production

Innovative food products

Plant-Based Meat Alternatives

Plant-based Alternatives: What?

- Plant-based meat alternatives (PBMAs) are produced with no or reduced content of animal products to resemble conventional meat products in terms of taste, flavor and texture:
- Target: Unlike the first generation of plant-based food (e.g., tofu), PBMAs are also targeted to meat eaters.
 - Facts, US Market: PBMA dollar sales grew to \$1.4 billion in 2022, which increased by <u>43% in the past three years</u> (Good Food Institute, <u>2022</u>)
 - Facts, European Market: Sales of PBMAs grew to €2 billion in 2022, which increased by <u>19% in the past three years (Good Food Institute, 2022</u>).

PBMAs: Benefits?

SUMMER SCHOOL

Innovative food products

 Less agricultural land use, water usage, greenhouse gas emissions, and energy use.

Figure 6. Relative comparison of impacts between beef (blue bars, set at 100% for each indicator) and Beyond Burger (red bars).

Source: Heller & Keoleian, 2018 (Link)

Source: Vegconomist, 2018 (Link)

PBMAs: Issues I

SUMMER SCHOOL

Innovative food products

Environmental Concerns...

Sep 28, 2016, 05:20pm EDT

In The Midst Of Drought, California Farmers Used More Water For Almonds

Mallory Pickett Former Contributor © Science I write about science and technology.

Source: Forbes, Sep 28, 2016 (Link)

Between 2007-2014 "23,000 acres of natural land have been converted to almond farms. 16,000 of those acres were land previously classified as wetlands. Additionally, some agricultural land has been converted from lower-water crops to almonds.

Follow

Overall almond acreage increased about 14% in California between 2007-2014 [...]. [B]ecause so much land was converted from natural land or lower-water crops, the irrigation increase for the almond industry was nearly twice that."

Plant-Based Food Companies Face Critics: Environmental Advocates

Some analysts say they cannot determine if plant-based foods are more sustainable than meat because the companies are not transparent about their emissions.

"An Impossible Burger has 21 ingredients, according to the company's website, including soy.

"The problem with plant-based products, generally speaking, is that while they may be fixing one problem, combating the fact that growing meat is very carbon intensive and emits a lot of carbon dioxide, depending on the ingredients and where they are sourced from, you could still be involved in deforestation issues," said Ms. Dobre of Sustainalytics. "You still need the space to grow the soy that is in many of these products."

PBMAs: Issue II

Health-related concerns...

			Ì	
Ground		Soy-Based		
Beef		Alternative		
Nutrition Fact	S	Nutrition	Facts	
Serving size (113	Bg)	Serving size	(113g)	
Amount Per Serving 22	0	Amount Per Serving Calories	250	
% Daily Va	lue*		% Daily Value*	
Total Fat 14g 1	8%	Total Fat 14g	18%	
Saturated Fat 5g 2	5%	Saturated Fat 8g	40%	
Trans Fat 0g		Trans Fat 0g		
Cholesterol 60mg 2	0%	Cholesterol 0mg	0%	
Sodium 70mg	3%	Sodium 370mg	16%	
Total Carbohydrate 0g	0%	Total Carbohydrate 9g	3%	
Dietary Fiber 0g	0%	Dietary Fiber 3g	11%	
Total Sugars 0g		Total Sugars 0g		
Includes 0g Added Sugars	0%	Includes 0g Added Suga	rs 0%	
Protein 23g 4	6%	Protein 19g	38%	
Vitamin D 0 1mcg	0%	Vitamin D Omco	0	

Pea-Based Alternative

Nutrition Serving size	Facts
Amount Per Serving Calories	260
	% Daily Value*
Total Fat 18g	23%
Saturated Fat 5g	25%
Trans Fat 0g	
Cholesterol 0mg	0%
Sodium 350mg	15%
Total Carbohydrate 5g	2%
Dietary Fiber 2g	7%
Total Sugars 0g	
Includes 0g Added Suga	rs 0%

Source: Van Vliet et al., 2020 (Link)

Protein 20g

40%

SUMMER SCHOOL

PBMAs: Issues III

SUMMER SCHOOL

Innovative food products

Low consumer acceptance

PBMAs: The Role of Information

SUMMER SCHOOL

Innovative food products

Van Loo, Caputo and Lusk 2020

PBMAs: The Role of Information

SUMMER SCHOOL

PBMAs: The Role of Information

SUMMER SCHOOL

Innovative food products

Sustainability

Conventional (farm-raised) meat such as ground beef is produced from cows, bulls, steers, and heifers grown in a variety of environments across the country and abroad. Some groups have expressed concerns about environmental and animal welfare impacts of conventional beef production.

Three meat or protein alternatives have been suggested to be more environmentally friendly and better for animal welfare.

The table below compares some estimated reductions in environmental impacts of each of the three alternatives compared to conventional beef.

	Plant-based meat using pea protein	Plant based meat using animal like proteins produced by prast	Lab grown mean
Water	99% _{less}	75 [%] _{less}	96 [%] less
Land	93 [%] less	95% _{less}	99 [%] less
Energy 🌮	46% less	93 [%] _{less}	45% _{less}
Greenhouse gas 🕋	90% less	87% _{less}	96 [%] less

Technology

Plant-based meat using pea protein

The primary source of protein in this burger comes from peas. In addition, trace amounts of beet lend a beefy red color while coconut oil and potato starch ensure mouth-watering juiciness and chew. The result is an plant-based patty that mimics the taste of an animal meat burger patty.

Plant-based meat using animal-like proteins produced by yeast

The burger patty is made from plant-based heme, wheat protein, coconut oil, potato protein. Heme is an iron-containing molecule that occurs naturally in every single plant and animal and is responsible for the characteristic of taste and aroma of meat. The plant-based heme is produced by a yeast, using fermentation. In order to have yeast producing the plant-based heme, the yeast is genetically engineered by adding the gene responsible to make heme in soy to the yeast. Since this heme is identical to the one found in animal meat, this plant-based burger patty mimics the taste of an animal meat burger.

Source: Van Loo, Caputo and Lusk 2020

Information Influences Consumer Demand for PBMAs

SUMMER SCHOOL

Innovative food products

0.25

PBMAs produced by yeast: understanding the

technology behind their creation increases

 PBMAs made with pea proteins: Providing information on sustainable aspects increase acceptance.

acceptance.

PBMAs – Final Remarks

SUMMER SCHOOL

Innovative food products

- Plant-based meat and seafood alternatives are becoming more and more popular.
- Their expansion does not come without negative side effects.
- Not all consumers are on-board with the transition.

SCHOOL OF ADVANCED

STUDIES ON

UNIVERSITÀ

Innovative food products

Gene-Editing in Food Production

Source: The Financial Times, Feb 11, 2019 (Link)

UMMER SCHOOL

Gene-Edited Food: What?

- Gene-editing represents an evolution of traditional genetic engineering technologies like genetic modification
 or GMOs.
- Unlike the first-generation of genetic modification, also known as GMOs (Genetically Modified Organisms), changes of the DNA are targeted and controlled, and it does not necessarily imply the insertion of foreign DNA.

Gene-Edited Food: Benefits?

Innovative food products

 Agricultural applications address a range of relevant issues in the agricultural and food space, including:

Gene-Edited Food: Issue I

Innovative food products

 Legislative hurdles: In Europe, gene-editing technology continues to be a topic of debate, with regulatory frameworks emphasizing precaution and strict oversight to balance innovation with potential risks.

Gene-Edited Food: Issues II

Low consumer acceptance

Word Association, Gene Editing

Source: Caputo et al., 2020 (Link)

Innovative food products

Source: Caputo et al., 2020 (Link)

Gene-Edited Food: The Role of Information

- Caputo et al. 2020, Food Industry Association, FMI report
- We assess consumer demand for various gene-edited plant-based and meat products

Source: Caputo et al., 2020 (Link)

UMMER SCHOOL

Gene-Edited Food: The Role of Information

Benefits to the environment

The gene-edited fresh spinach that you have the option to hypothetically purchase in the following section was created by turning pre-existing genes from the spinach on or off to use 40% less water in production and thus reducing the environmental impact.

Claim in the choice questions

Source: Caputo et al., 2020 (Link)

Marginal WTPs of gene-edited vs.
GMO Fresh Spinach & Frozen Spinach

Source: Caputo et al., 2020 (Link)

URAR SCHOOL

Gene-Edited Food: The Role of Information

Innovative food products

Benefits to the animal welfare

The gene-edited pork chops that you have the option to hypothetically purchase in the following section were created by turning preexisting genes of the pig on or off to increase the resilience of animals against a contagious and potentially deadly virus and thus enhancing the health care of the animals.

Gene-Edited to increase Resilience against animal diseases \$2.59

- Claim in the choice questions

UNIVERSITÀ

Source: Caputo et al., 2020 (Link)

Marginal WTPs of gene-edited vs. GMO, Pork Chops & Bacon

Source: Caputo et al., 2020 (Link)

Gene-Editing: Final Remarks

- Consumers have low levels of knowledge and awareness about gene-edited food and associated predominantly negative feelings with the technology.
- Information about the technologies needs to be supplemented with specific benefit messages if the technology is to be more widely accepted.
- Future marketing and policy efforts need to be directed and adapted to the specific food innovation in question and cannot be guided by a single, overall approach.

Stay connected

Subscribe to www.efsa.europa.eu/en/news/newsletters www.efsa.europa.eu/en/rss

Engage with careers www.efsa.europa.eu/en/engage/careers

Follow us on Twitter

@efsa_eu @plants_efsa @methods efsa

Thank you!

Current (Selected) Research Projects:

- Market potential of meat alternatives (USDA-ERS)
- Consumer acceptance of gene-editing (USDA-NIFA)
- The Role of trust in science and its communicator in technology adoption (USDA-NIFA)
- Meal-Clicks: Consumer demand for food away from home ordered online(USDA-NIFA)
- Promoting sustainable retailing and consumption (NSF)

SUMMER SCHOOL