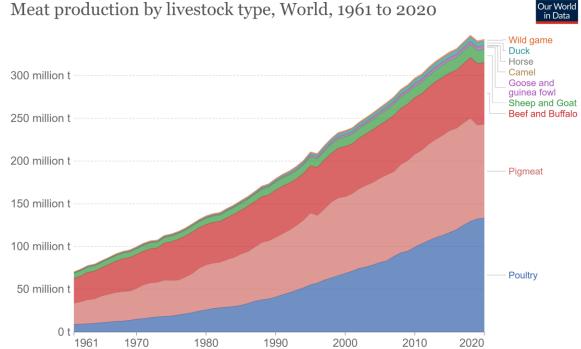
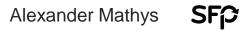


OUR CULTIVATED PLANET


This table shows the ten most cultivated crops of the world. Of 1,400 million hectares (Mha) of arable land, more than a third is covered by the three major cereals: wheat, maize and rice. Soybeans are the only other crop to be grown on more than 100 Mha, with strong growth over the last 20 years, while other crops covers much smaller areas. Although they do not always have the highest yields, the largest countries (United States, China, Russia, India, etc.) are the main grain producers, with more or less regional specificities depending on the crop.

¹ The areas occupied by each crop as well as the maps of the quantity produced by each country refer to year 2019.

² Trends from 2000 to 2019, expressed as percentage of values for year 2000


Data: FAOStats | Table: @BjnNowak

Source: UN Food and Agricultural Organization (FAO) OurWorldInData.org/meat-production • CC BY Note: Total meat production includes both commercial and farm slaughter. Data are given in terms of dressed carcass weight, excluding offal and slaughter fats.

Farmed animals: 1.5 bn cattle, 1 bn pigs, 19 bn chicken Slaughtered per year: 69 bn chicken, 1.5 bn pigs, 302 million cattle WEF, 2019; Our World in Data, 2022

Pets in the world: 470 million dogs, 370 million pet cats. https://www.statista.com

Meat production by livestock type, World, 1961 to 2020

Recent Relevant Publications on Food System Sustainability

Planetary Health Articulating the effect of food systems innovation on the Sustainable Development Goals

Mario Herrero, Philip K Thornton, Daniel Mason-D'Croz, Jeda Palmer, Benjamin L Bodirsky, Prajal Pradhan, Christopher B Barrett, Tim G Benton, Andrew Hall, Ilje Pikaar, Jessica R Bogard, Graham D Bonnett, Brett A Bryan, Bruce M Campbell, Svend Christensen, Michael Clark, Jessica Fanzo, Cecile M Godde, Andy Jarvis, Ana Maria Loboguerrero, Alexander Mathys, C Lynne McIntyre, Rosamond L Naylor, Rebecca Nelson, Michael Obersteiner, Alejandro Parodi, Alexander Popp, Katie Ricketts, Pete Smith, Hugo Valin, Sonja J Vermeulen, Joost Vervoort, Mark van Wijk, Hannah HE van Zanten, Paul C West, Stephen A Wood, Johan Rockström

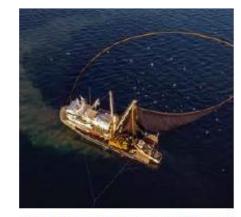
> nature sustainability

ENVIRONMENTAL RESEARCH

LETTERS

THE LANCET

comment Check for updates


Bundling innovations to transform agri-food systems

Christopher B. Barrett, Tim G. Benton, Karen A. Cooper, Jessica Fanzo, Rikin Gandhi, Mario Herrero, Steven James, Mark Kahn, Daniel Mason-D'Croz, Alexander Mathys, Rebecca J. Nelson, Jianbo Shen, Philip Thornton, Elizabeth Bageant, Shenggen Fan, Andrew G. Mude, Lindiwe M. Sibanda and Stephen Wood

PERSPECTIVE

COVID-19 pandemic lessons for agri-food systems innovation

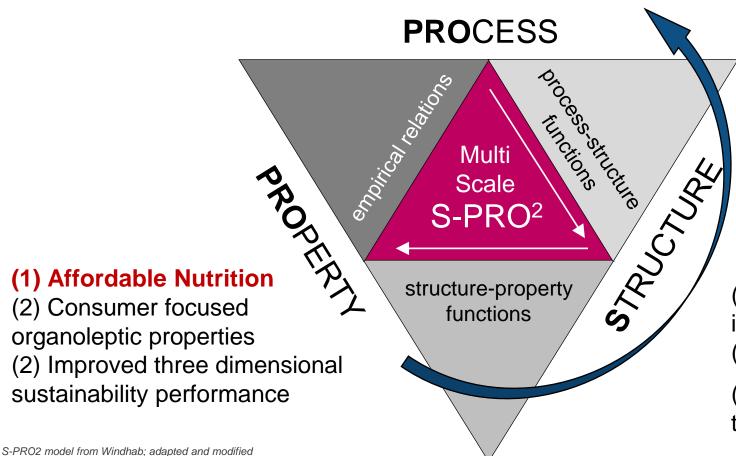
Christopher B Barrett[®], Jessica Fanzo, Mario Herrero, Daniel Mason-D'Croz[®], Alexander Mathys[®], Philip Thornton, Stephen Wood, Tim G Benton, Shenggen Fan, Laté Lawson-Lartego, Rebecca Nelson, Jianbo Shen and Lindiwe Majele Sibanda

Socio-Technical Innovation Bundles for Agri-Food Systems Transformation

A Cornell Atkinson Center for Sustainability/ Nature Sustainability Expert Panel Report

December 2020

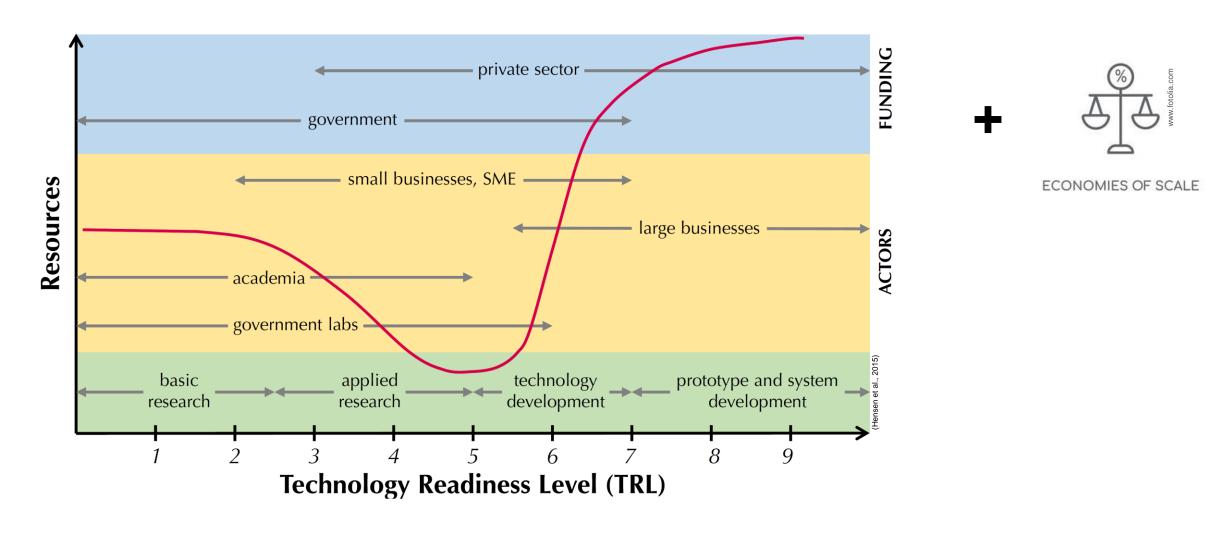
nature sustainability


The relevance of behavioral and technological changes for developing enabling policy strategies for sustainable development

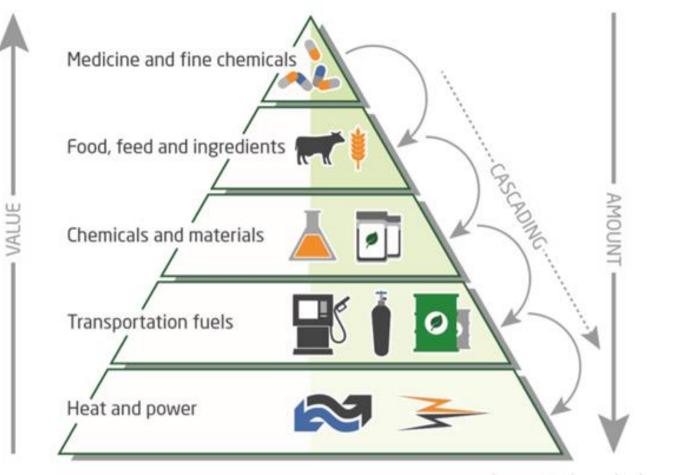
A _{High}	Sufficiency	Sufficiency & Substitution
Relevance of behavioral change reaching SDGs and climate targets	Focus on policy that induces behavioral change, increasing positive feedback. E.g.: Avoiding long-distance air- travel for vacation.	Focus on policy that induces behavioral and technological change, increasing positive feedback. E.g.: Moving to plant-based products.
e of bel SDGs a	Efficiency	Substitution
Relevance in reaching	Status quo: Focus on incremental efficiency gains of existing solutions, not on behavioral or	Focus on policy that induces technological change, increasing positive feedback.
Low	technological change.	E.g.: Deployment of renewable energy technologies.
·	Low Relevance of tech in reaching SDGs a	
	Low	High

Fesenfeld, Schmid, Finger, Mathys & Schmidt (2022). One Earth https://doi.org/10.1016/j.oneear.2022.09.004

Reverse Engineering Approach

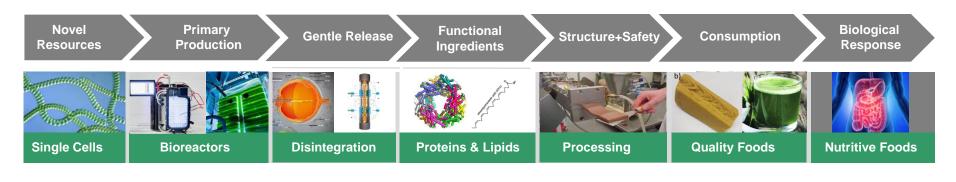


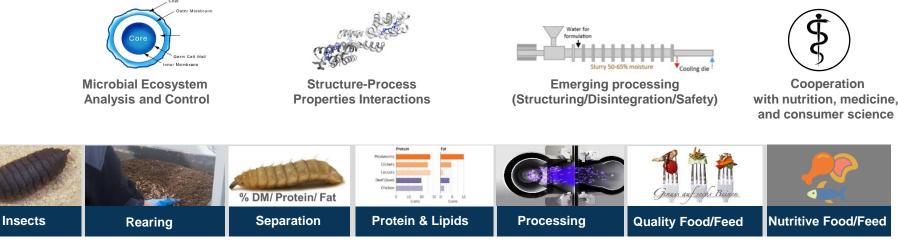
Which is the **structure** providing the target properties & which is the **process** to generate such structure


(1) Targeted (multiphase) structurein different scales(nano, micro, meso, macro)

(2) Materials with targeted techno- and biofunctionalities

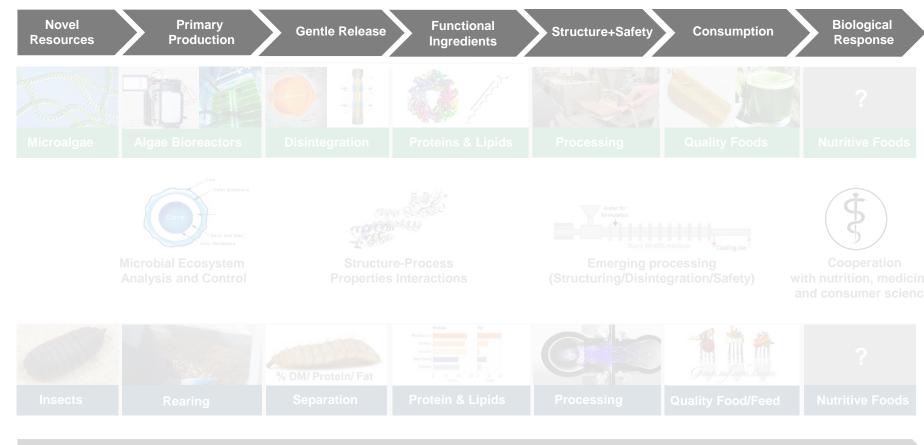
Different technology readiness level, the connected ecosystem and relevance of economies of scale


Biomass Value Pyramid



https://frsfarmreliefservices.ie

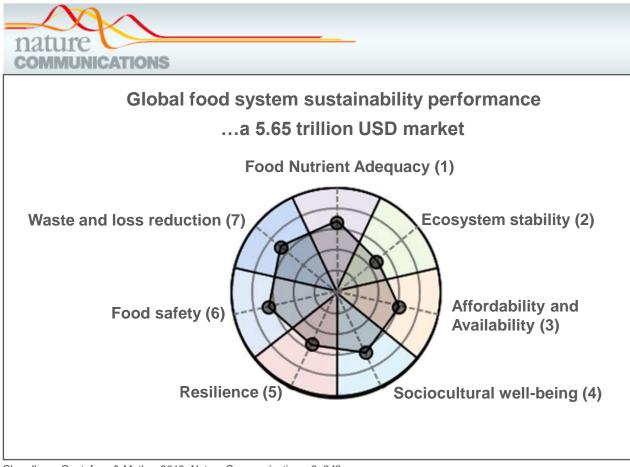
ETH Sustainable Food Processing Research

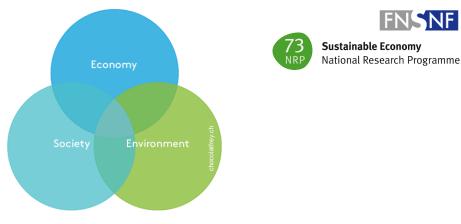


Multi Indicator Sustainability Assessment - Method Development and Case Studies

ETH zürich A

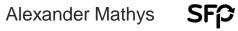
ETH Sustainable Food Processing Research-Focus Sustainability

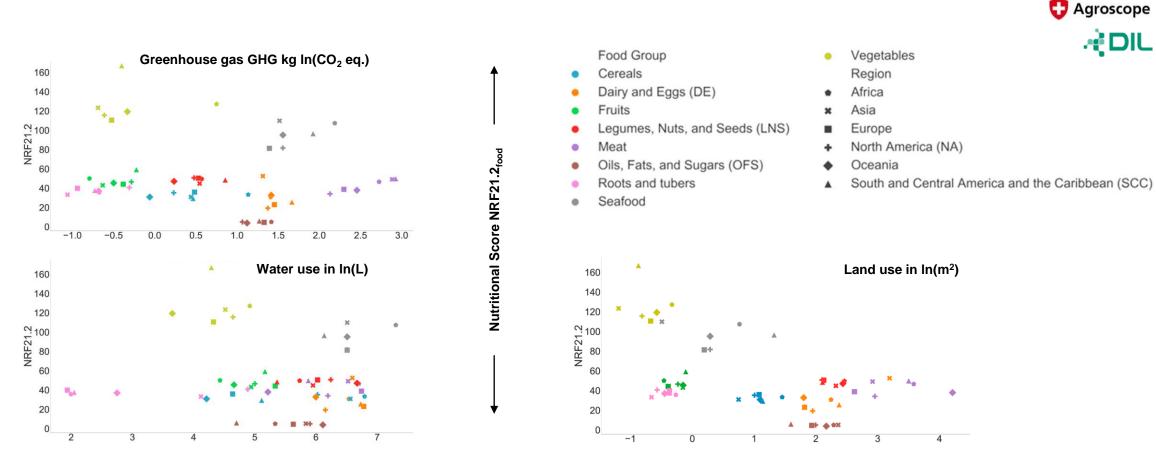



Multi Indicator Sustainability Assessment - Method Development and Case Studies

ETH zürich Alexander Mathys

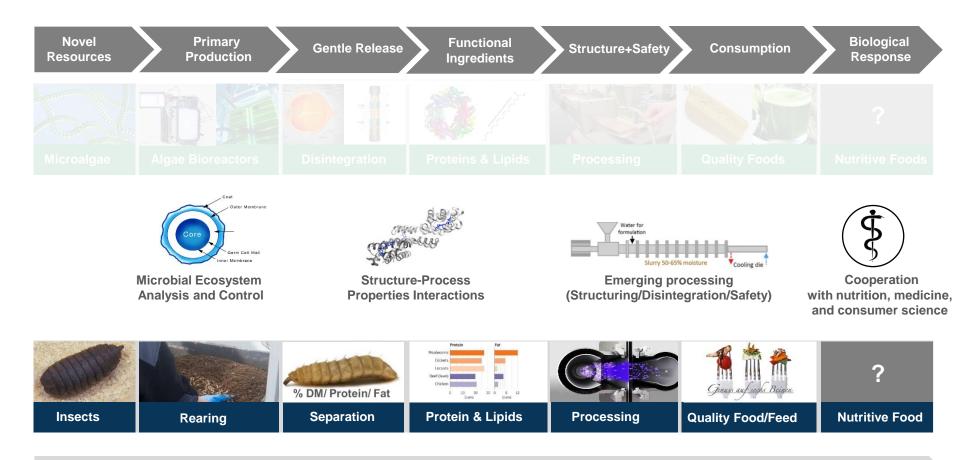
Food system understanding by multi-indicator sustainability analysis of all three dimensions




Global food systems are at the heart of our 17 SDGs

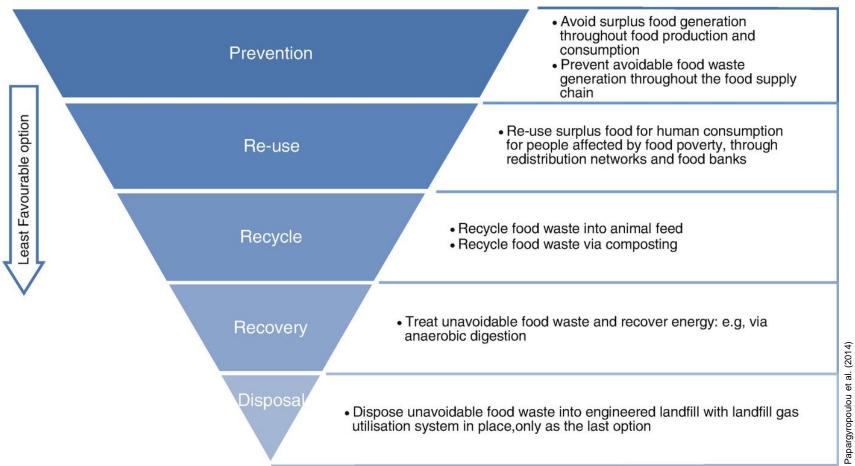
Chaudhary, Gustafson & Mathys 2018, Nature Communications. 9, 848

Multi Indicator Sustainability Assessment - Regionally-explicit nutritional scores (Nutrient Rich Food Index NRF21.2_{food}) & mass-based (1 kg) environmental impacts



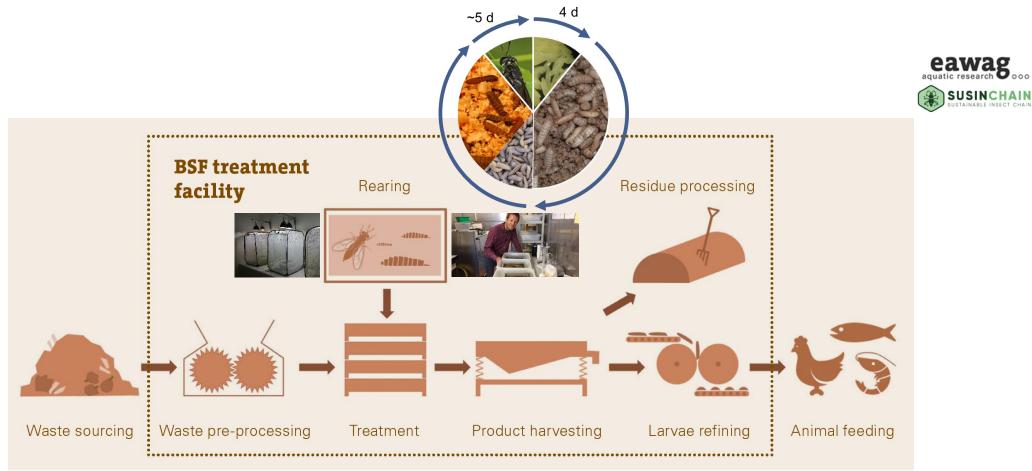
Green, Nemecek, Smetana & Mathys, 2021, Journal of Cleaner Production, 312, 127696

Shows nutritionally-invested environmental impacts


ETH Sustainable Food Processing Research-Focus Insects

Multi Indicator Sustainability Assessment - Method Development and Case Studies

The Waste hierarchy from most favourable to least favourable actions



Waste hierarchy

is a tool used in the evaluation of processes that protect the environment alongside resource and energy consumption from most favourable to least favourable actions

(Hansen, Wenke; Christopher, Maria; Verbuecheln, Maic 2002. EU Waste Policies and Challenges for Local and Regional Authorities)

Alternative animal proteins based on Black Soldier Fly waste utilization for more sustainable feeds

(Stefan Diener, Black Soldier Fly Biowaste Processing Manual, Sandec 2017; ETH Zurich SFP and Eawag facility in Dübendorf, CH)

1) Gold, Tomberlin, Diener, Zurbrügg, & Mathys (2018). Waste Management. 82, 302-318.

2) Aarts, Jansen, Jacobs, Mescher, Prenter, Mathys & De Moraes (2018). Processing of insect larvae. EU patent application. Application No 18175914.3-110

3) Gold, Cassar, Zurbrügg, Kreuzer, Bolus, Diener & Mathys (2019). Waste Management. 102, 319-329.

4) Gold, Egger, Scheidegger, Zurbrügg, Bruno, Bonelli, Tettamanti, Casartelli, Schmitt, Kerkaert, De Smet, van Campenhout & Mathys (2020). Waste Management. 112, 40-51.

5) Gold et al. (2020). Journal of Insect Science, 20: 3, 21ff.

6) Gold, von Allmen, Zhang, Zurbrügg & Mathys (2020). Frontiers in Microbiology, 11: 582867.

7) Gold, Fowles, Fernandez-Bayo, Palma Miner, Zurbrügg, Nansen, Bischel & Mathys (2021). Journal of Insects as Food and Feed. doi.org/10.3920/JIFF2021.0038

8) Peguero, Gold, Vandeweyer, Zurbrügg & Mathys (2021). Frontiers Sustainable Food Systems.

Black soldier fly larvae-based side stream and waste utilization and biorefinery products

Protein meal

Key benefits: Balanced amino acid profile with very good palatability and digestibility.

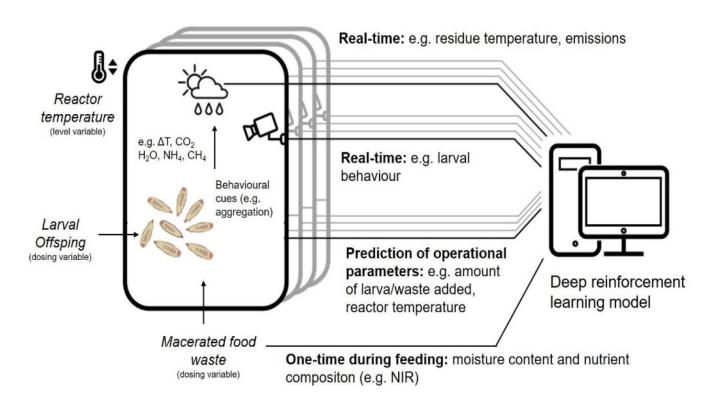
Insect lipids

Key benefits: Easy digestible energy with high lauric acid content.

Fertilizer

Key benefits: Slow nutrient release over time with chitin as functional component.

2020) (BITS,



SFP

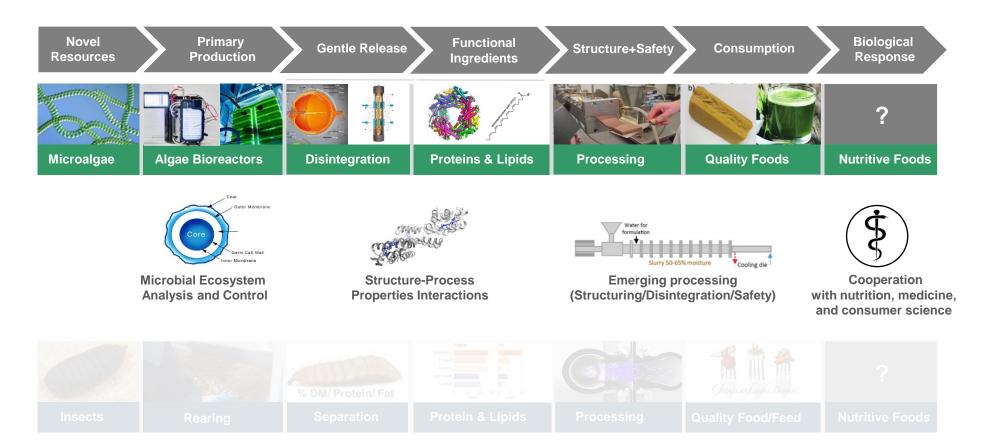
Smetana, Schmitt & Mathys (2019). Resources, Conservation & Recycling. 144, 285–296.

Develop processes for the BSF larvae to utilize food waste using novel machine learning approaches in larval rearing

Figure 3: Design for decentralized BSF rearing. Adjusting of operational parameters (e.g. larval number, temperature) by sensor-based performance indicators.

THE STRAITS TIMES

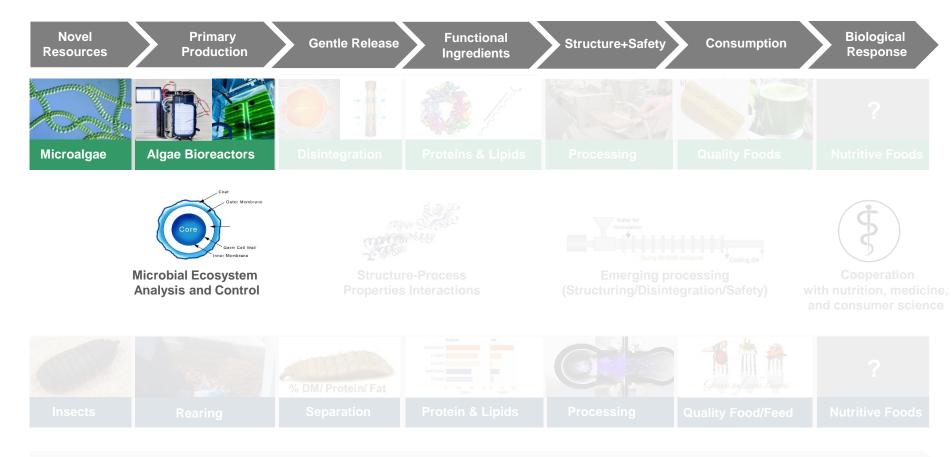
Researchers develop blueprint for sustainable food system using black soldier flies



(From left) Professor Stephen Cairns, Assistant Professors Alexander Mathys and Nalini Puniamoorthy on Jan 25, 2022. ST PHOTO: JASON OUAH

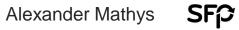
https://news.nus.edu.sg/interdisciplinary-team-to-develop-blueprint-for-sustainable-urban-food-waste-management-and-food-systems-using-black-soldier-flies/

ETH Sustainable Food Processing Research-Focus Microalgae

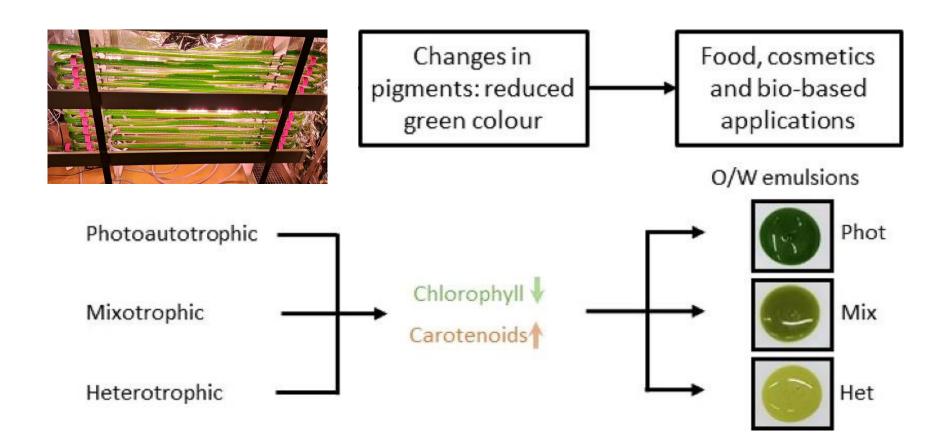


Multi Indicator Sustainability Assessment - Method Development and Case Studies

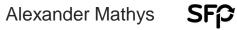
ETH zürich



ETH Sustainable Food Processing Research-Focus Microalgae

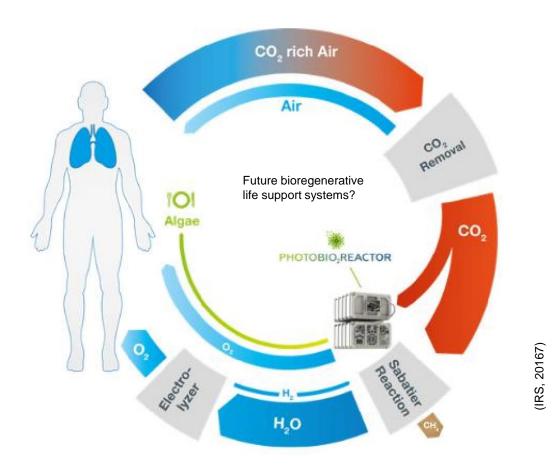

Multi Indicator Sustainability Assessment - Method Development and Case Studies

ETH zürich



18 | 30

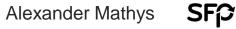
Innovative microalgae upstream cultivation to increase efficiency and adapt final composition, nutritional aspects, and color

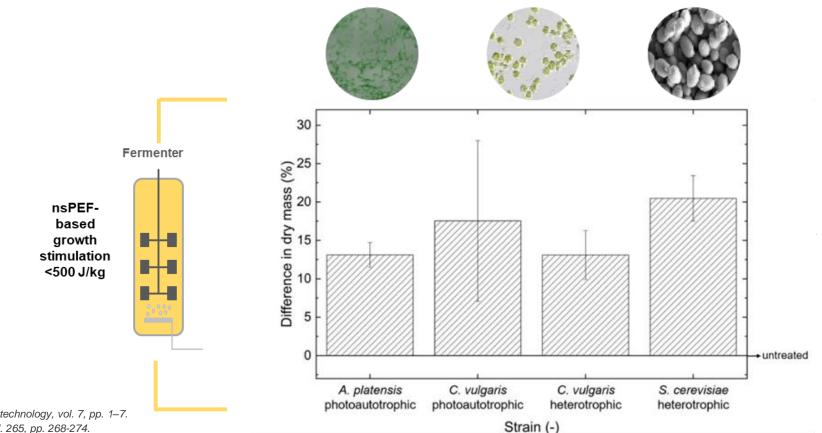


Caporgno, Haberkorn, Böcker & Mathys (2019). Bioresource Technology, 288, 121476.

Chlorella vulgaris cultivation as life support system module onboard the International Space Station ISS

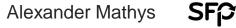
Haberkorn, Helisch, Belz, Detrell, Fasoulas & Mathys (2023), in preparation. Haberkorn (2021) Dr. thesis. Haberkorn, Walser, Helisch, Böcker, Belz, Schuppler, Fasoulas & Mathys (2020). Journal of Phycology, 56: 1308 - 1322.



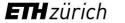


Alexander Gerst with *Chlorella* at ISS (ESA, 2018)

PEF-based microalgae process innovation – creating a holistic biorefinery


Buchmann & Mathys (2019). Frontiers in Bioengineering and Biotechnology, vol. 7, pp. 1–7.

Buchmann, Bloch & Mathys (2018). Bioresource Technology, vol. 265, pp. 268-274.


Buchmann, Böcker, Frey, Haberkorn, Nyffeler & Mathys (2018). Innovative Food Science and Emerging Technologies, vol. 47, pp. 445-453.

Buchmann, Frey, Gusbeth, Ravaynia & Mathys (2019). Bioresource Technology, vol. 271, pp. 402–408. Buchmann, Brändle, Haberkorn, Hiestand & Mathys (2019). Bioresource Technology, vol. 291, pp. 121870. Haberkorn, Buchmann, Hiestand & Mathys (2019). Bioresource Technology, vol. 293, pp. 122029. Haberkorn, Buchmann, Häusermann & Mathys (2020). Bioresource Technology, vol. 319, pp. 124173. Haberkorn, Siegenthaler, Buchmann, Neutsch & Mathys (2021). Biotechnology Advances.

ETH zürich

Increased cell proliferation by nanosecond PEF 1st commercial system worldwide based on ETH Zurich R&D

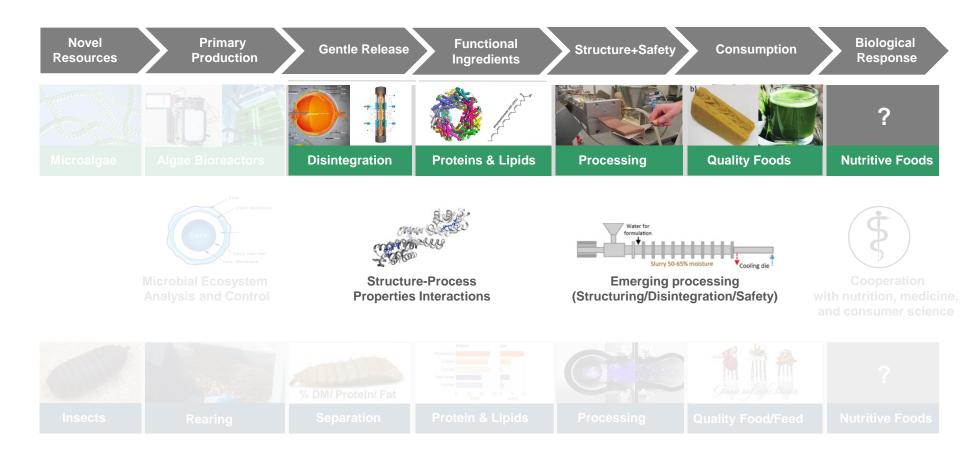
Singapore-ETH Centre

About Research Impact People Partners News & Events Resources Jobs

Q

Homepage > News & Events > ... 2022 > 08 > SEC's Microalgae project gets a stellar addition from its partner Bühler I

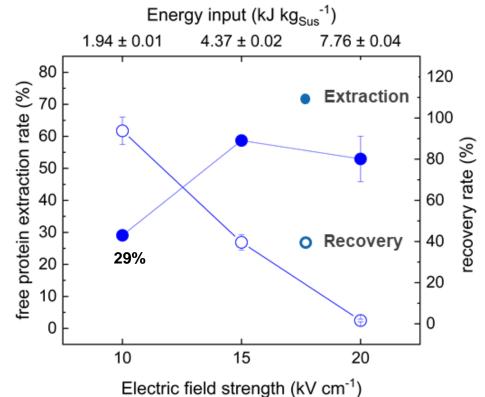
NEWS · RESEARCH PROJECT

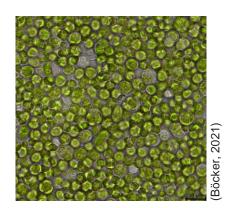

SEC's Microalgae project gets a stellar addition from its partner Bühler Group

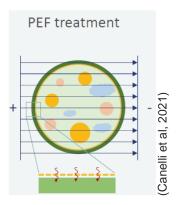
Bühler Group deploys its world's first Stellar system based on nanosecond pulsed electric fields at SEC for more efficient microalgae processing.


www.sec.ethz.ch

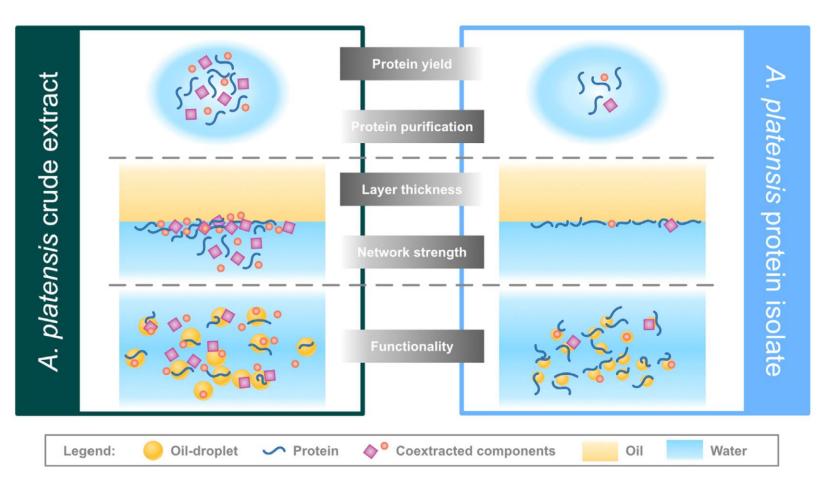
ETH Sustainable Food Processing Research-Focus Microalgae


Assessment - Method Development and Case Studie




PEF based cyclic protein extraction/milking of microalgae

Pulsed electric field based cyclic protein extraction of microalgae towards closed-loop biorefinery concepts



Buchmann, Brändle, Haberkorn, Hiestand & Mathys (2019). Bioresource Technology 291,121870.

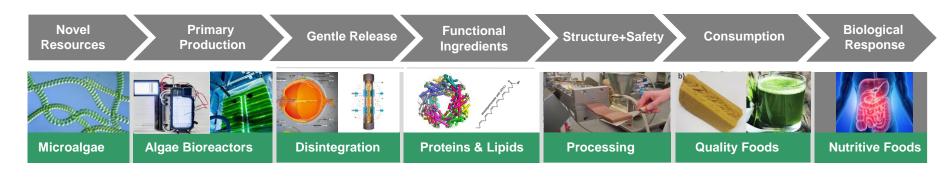
Effect of *Arthrospira* (Spirulina) protein purification on emulsification mechanism and efficiency

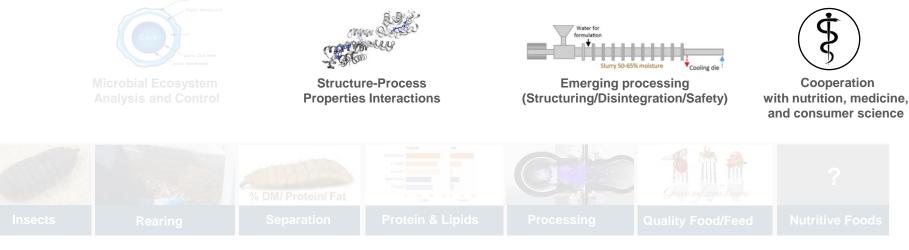
Böcker, Bertsch, Wenner, Teixeira, Bergfreund, Eder, Fischer & Mathys (2021) Journal of Colloid and Interface Science. 584, 344-353.

ETH zürich Alexander Mathys

High moisture extrusion to produce 1st bright microalgae-based meat analogs worldwide, with increase of nutritional value

planted.

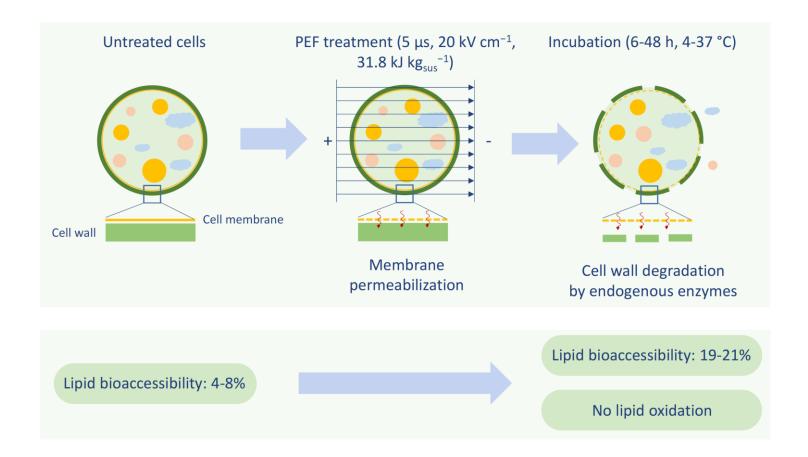



Recommended daily intake (RDI) of the selected vitamins in 100 g of unprocessed microalgae (MA) powder, extrudate with 50% MA_{DW} before and after extrusion, and soy protein concentrate powder according to FDA (2016).

Caporgno*, Böcker*, Müssner, Stirnemann, Haberkorn, Adelmann, Handschin, Windhab & Mathys (2020). Innovative Food Science and Emerging Technologies, vol. 59, pp. 102275

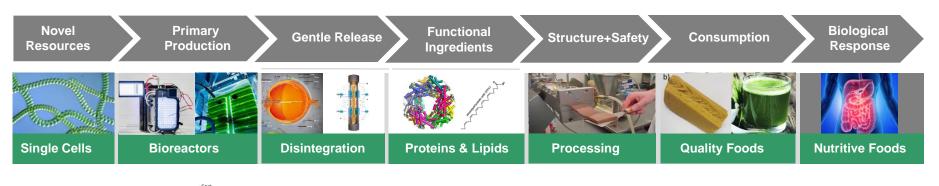


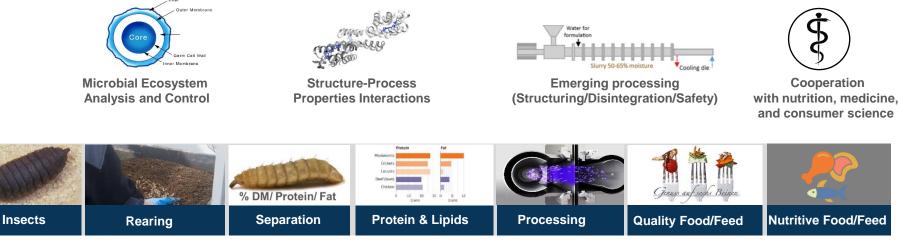
ETH Sustainable Food Processing Research-Focus Microalgae



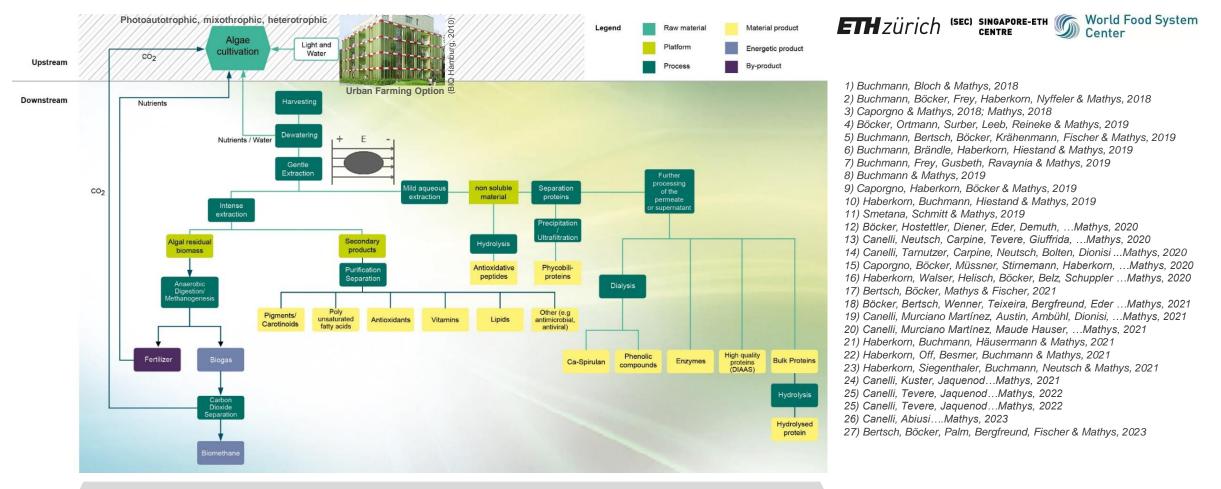
Multi Indicator Sustainability Assessment - Method Development and Case Studie

Increased lipid bioaccessibility by pulsed electric field (PEF) and incubation


Canelli, Kuster, Jaquenod, Buchmann, Martínez, Rohfritsch, Dionisi, Bolten, Nanni and Mathys (2021). Innovative Food Science & Emerging Technologies, 75, pp. 102897



ETH Sustainable Food Processing- Summary and Future Outlook

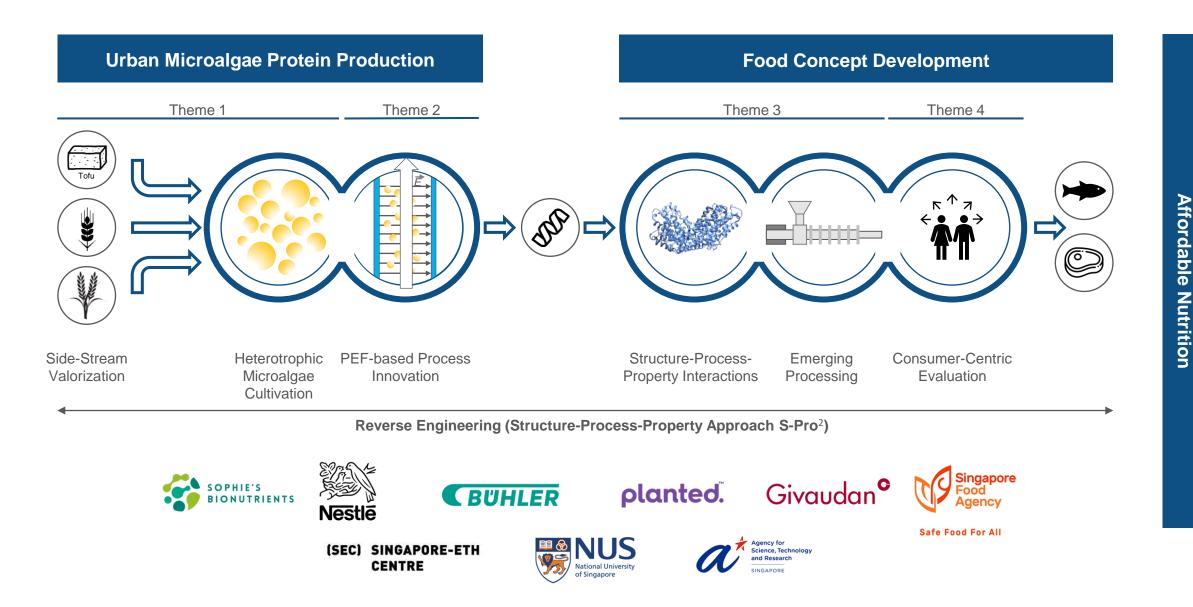


Multi Indicator Sustainability Assessment - Method Development and Case Studies

ETH zürich Ale

Future outlook-How to integrate our R&D Innovative Algae Biorefinery Concept based on emerging up- and downstream

Multi Indicator Sustainability Assessment and Connection to Nutritional R&D


Our new lab at the Singapore ETH Center SEC (we are looking for collaborations)

CREATE Tower. Credit:Photography by Tim Griffith

Urban Single-Cell Protein Production Harnessing Emerging Microalgae-based Up- and Downstream Concepts- new initiative to follow up

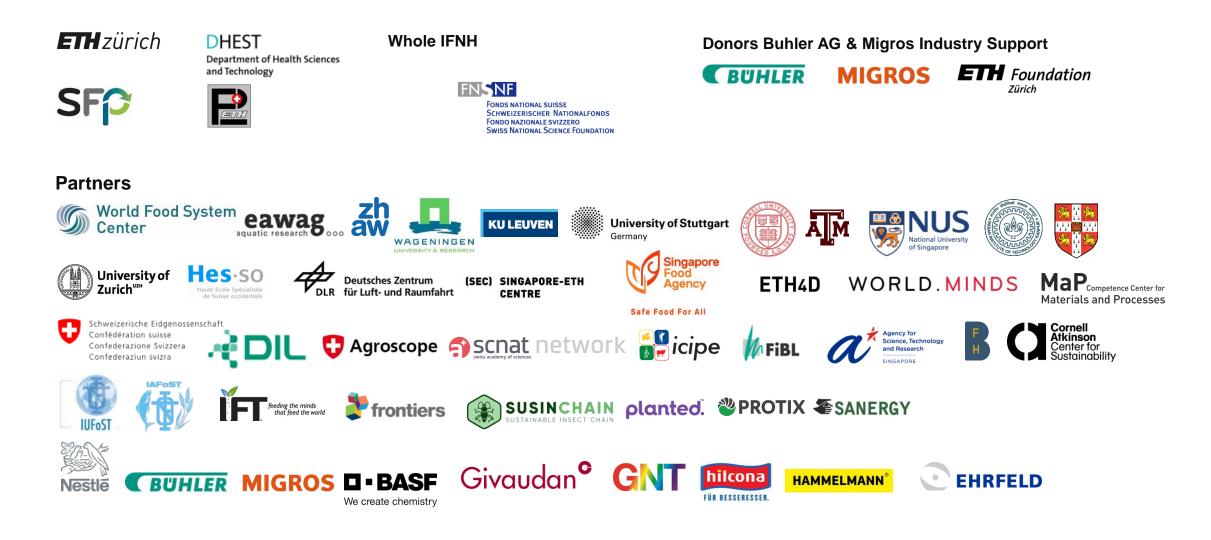
Urban Single-Cell Protein Production Team in Singapore

Safe Food For All

Agency for

Science, Technology and Research

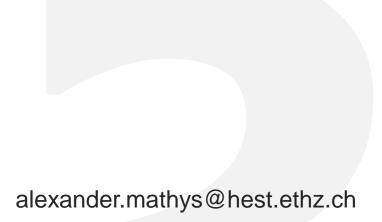
(SEC) SINGAPORE-ETH CENTRE



Acknowledgement

Thank you very much- ETH Sustainable Food Processing Lab

ETH zürich Alexander Mathys



Prof. Dr.-Ing. Alexander Mathys Head of Sustainable Food Processing Laboratory alexander.mathys@hest.ethz.ch

ETH Zurich Institute of Food, Nutrition and Health IFNH Department of Health Science & Technology D-HEST Schmelzbergstrasse 9 LFO E 12.2 CH-8092 Zurich Switzerland

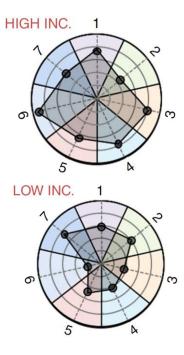
www.sfp.ethz.ch

www.sfp.ethz.ch

Environmental sustainability of most relevant protein sources in comparison (Nutritional impacts are not included)

	DM %	Protein, %	GWP, kg CO ₂ eq. global warming potential	OD, mg CFC11 ozone depletion	AC, g SO ₂ eq. acidification	EU, g N eq.	ED, MJ energy demand fr	FD, m ³ reshwater depletion	LU, m ² a land use	
Soybean meal	87.5 ¹	49.1 ¹	0.34-0.72 ¹ 6.52 ¹⁹	0.2-0.3 ^{1,17}	$-1.2 - 3.1^{1}$ 11.4 ¹⁷	-81-2 ¹ (g NO ₃ eq.)	5.37 ⁶ 25.5 ¹⁹	0.04 ⁶	3.26 ⁶	
Rapeseed cake	89 ¹	34.8 ¹	$0.37 - 0.57^{6}$	0.004-0.05 ⁶	6.8-7.5 ⁶	8.9-9.1 ⁶	3.3-3.8 ⁶	$0.001 - 0.03^{6}$	1.5-1.6 ⁶	
Pea protein meal	n/a	n/a	0.44 ⁶ 4-10 ⁸ (pulses)	0.057 ⁶	21.86	7.94 ⁶	5.25 ⁶	0.036	2.85 ⁶	
Fishmeal	90 ⁴	60-72 ⁵	0.12-0.58 ¹⁸	0.016-0.073 ¹⁸	0.12-8.7 14,18	-16 ⁴ 0.4-0.87 ^{3.18}		0.0002- 0.0016 ¹⁸	0.0005- 0.0052 ¹	
			0.65-	0.83^{3}	7.0 ¹³		4,3		8,3	
			1.8 ^{14,3,4,13}	0.947-	15.9-		21^{13}	0.0036 ³	0.6-	
			0.48-	$1.03^{17,4}$	18.0 ^{4.16}		79.8 ¹⁷	0.347 ⁴	1.1^{14}	
			5.6 ^{15,16}		56.7-		120 ¹⁶			
			5.37 ¹⁷		62.6 ^{19,3}					
HM (this study)	96.6	56	5.3	0.43	21.3	17.9	84.18	0.0028	1.89	HM-Ins
HP (this study)	30	17	1.16	0.091	5.3	4.6	17.9	0.0006	0.48	HP-Ins
Fresh meat (chicken)	25-30	23-24	$1.62 - 3.12^{10}$	1.8 ¹⁰	44.25 ¹⁰	75 ¹⁰ (g NO ₃ eq.)	18.5-65 ¹⁰	$0.053 - 0.155^{11}$	19.5-31.3 ¹¹	
Whey concentrate	86-	60 ^{3,7}	7.48 ⁷	0.01-	0.05-	1.14^{6}	58.1^2	0.003-	0.26-	
	89 ³	80 ^{11,kp}	$0.8-7.4^{6}$	0.06 ⁹	1.5^{6}	37.3 ²	83.3 ⁷	0.066 ⁶	8.27^{6}	
			12.1^{2}	3.33 ⁷	56.6 ⁷	3.59-	10.7-	1.45^{2}		
			28–43 ^{8,kp}	3.8 ^{11,kp}		101 ⁹	39.4 ⁶	9.58 ⁷		
			40.6 ^{11,kp}			229.3 ^{11,kp}				
Egg protein concentrate ⁹	85	80	23.4	1.01	4000	139	183	2.65	40.1	
Microalgae ⁹	96	55	14.7-245.1	0.9-19.8	260.5-1407.5	40.6-105.3	217.1-	0.3-3.9	1.7-5.4	
							4181.3			

HM-Insect meal (defatted protein concentrate) HP-Insect puree (fresh insect production)


Sources: ¹ – (Dalgaard et al., 2008); ² – (Kim et al., 2013); ³ – own calculations, ⁴ – Danish LCA Food Database; ⁵ – (Hall, 2011); ⁶ – ecoinvent 3 and Agrifootprint databases; ⁷ – (Smetana et al., 2016); ⁸ - (Nijdam et al., 2012); ⁹ – (Smetana et al., 2017); ¹⁰ – (González-García et al., 2014; Weidema et al., 2008); ¹¹ – (Wiedemann et al., 2017); ¹² – (Bacenetti et al., 2018); ¹³ – (Papatryphon et al., 2004); ¹⁴ – (Samuel-Fitwi et al., 2013); ¹⁵ – (Cashion et al., 2017); ¹⁶ – (Smárason et al., 2017); ¹⁷ – (Silva et al., 2017); ¹⁸ – (Fréon et al., 2017); ^{kp} – per kg protein. Note: HP – *H. illucens* puree (fresh insect production); HM – *H. illucens* meal (defatted protein concentrate); DM – dry mass, GWP – global warming potential; OD – ozone depletion; AC – acidification; EU – eutrophication; ED – energy demand; FD – freshwater depletion; LU – land use. CFC-11: Trichlorofluoromethane

Smetana, Schmitt & Mathys (2019). Resources, Conservation & Recycling. 144, 285–296.

Environmental impact comparison of main protein sources used for feed and food (per 1 kg of product)

Multi-indicator approach quantifying the status of national food system performance

Metric		Indicator	Median	Source	GDP correlation
Food Nutrient Adequacy	1		61		0.53
		Shannon Diversity of Food Supply	74	Remans et al. ³³	0.42
		Non-Staple Food Energy	46	Remans et al. ³³	0.72
		Modified Functional Attribute Diversity	77	Remans et al. ³³	0.70
		Population Share with Adequate Nutrients	76	This study	0.64
		Nutrient Balance Score	75	This study	0.46
		Disqualifying Nutrient Score	12	This study	- 0.74
Ecosystem Stability	2		47	-	- 0.36
		Ecosystem Status	43	Hsu et al. ³⁴	0.51
		Per-Capita GHG Emissions	51	This study	- 0.79
		Per-Capita blue water consumption	50	This study	- 0.75
		Per-Capita Land Use	50	Alexander et al. ⁹	- 0.09
		Per-Capita Non-Renewable Energy Use	28	World Bank ⁵⁹	0.00
		Per-Capita Biodiversity Footprint	50	Chaudhary et al. ²⁸	0.02
Affordability and Availability	3		63	-	0.83
		Food Affordability	54	GFSI ³⁷	0.85
		GFSI Food Availability Score	56	GFSI ³⁷	0.80
		Poverty Index	88	GFSI ³⁷	0.82
		Income Equality	62	World Bank ⁶⁰	0.24
Sociocultural Wellbeing	4		60		0.71
5	•	Gender Equity	68	WEF ³⁹	0.43
		Extent of Child Labor	50	ILO ⁴⁰	0.59
		Respect for Community Rights	60	WRI ⁴¹	0.63
		Animal Health and Welfare	60	API ⁴²	0.70
Resilience	5		57		0.64
		ND-GAIN Country Index	52	Chen et al. ⁴³	0.80
		Food Production Diversity	64	Remans et al. ³³	-0.20
Food Safety	6	· · · · · · · · · · · · · · · · · · ·	71		0.76
· · · · · · · · · · · · · · · · · · ·		Global Burden of Foodborne Illnesses	50	WHO ⁴⁵	0.70
		Food Safety Score	88	GFSI ³⁷	0.80
Waste and Loss Reduction	7	Pre- and Post-Consumer Food Waste and Loss	68	FAO ⁴⁶	-0.68

FNSNF 73 NRP

HIC score well on most social indicators, but poorly on environmental, food waste and health sensitive nutrition indicators \rightarrow Link to our actions

Chaudhary, Gustafson & Mathys 2018, Nature Communications. 9, 848

Literature with partially outdated data, Microalgae standard disintegrations and their energy consumptions

Technology	Microalgae species	Energy demand (KWh/kg)	References
Bead milling	Chlorella sp, botryococcus,	2.8-46.6	D'Hondt et al. (2017)
2	scenedesmus.	0.43-3.0	Postma et al. (2015),
	Chlorella vulgaris	0.85	Soto-Sierra, Stoykova, and Nikolov
	Chlorella sp	0.1–0.6	(2018)
	N. gaditana		Doucha and Lívanský, (2008)
	5		Safi et al. (2017)
High pressure homogenizer	N. gaditana	0.32-10.44	Safi et al. (2017)
5.	Chlorella, tetraselmis, chlorococcum sp.	0.25–147	D'Hondt et al. (2017),
			Grimi et al. (2014),
			Halim et al. (2012),
			Lee, Lewis, and Ashman (2012)
Ultrasound	Chlorococcum sp, spirulina,	0.06-36.7	Doucha and Lívanský (2008),
	nannochloropsis,	1.6	Lee, Lewis, and Ashman (2012).
	chlamydomonas.	0.119	Keris-Sen et al. (2014)
	Chlorococcale, Chlorophyceae class.		Guldhe et al. (2014)
	Scenedesmus sp.		
Pulsed electric field	Isochrysis	0.07	Boer et al. (2012).
	Chlorella vulgaris	1.11	Postma et al. (2015)
	N. gaditana	10.44	Safi et al. (2017)
Enzymatic treatment	N. gaditana	<0.34	Safi et al. (2017)

Table 4. Microalgae cell disruption methods in terms of energy consumption (KWh/kg).

ETHzürich


Macronutrient composition (% per 100 g DM) of dried microalgal biomasses

		Biotona	Piura	Purasana	Soleil Vie	Alver	LG-Chlorella
				% dry matte	er		
Carbohydrates	EV	11.7 ± 1.7	14.1 ± 0.7	11.0 ± 0.2	9.9 ± 0.4	20.2 ± 0.2	65.0 ± 0.3
	PV	29	17.3	22	5.2	23.5	
Proteins	EV	63.4 ± 0.0	62.7 ± 0.1	65.5 ± 0.1	64.1 ± 0.0	59.6 ± 0.0	18.9 ± 0.0
	PV	58	59.1	60	59.1	63	
Fatty acids	EV	9.8 ± 0.4	9.7 ± 0.6	9.2 ± 1.0	9.0 ± 0.6	10.0 ± 1.2	8.0 ± 0.1
	PV	12	13.4	15	13.4	11	

TABLE 2 | Macronutrient composition (% per 100 g DM) of dried microalgal biomasses.

Experimental results are expressed as mean \pm standard deviation (n = 3) and compared to reference values on the packaging's label. EV, experimental value; PV, packaging value.

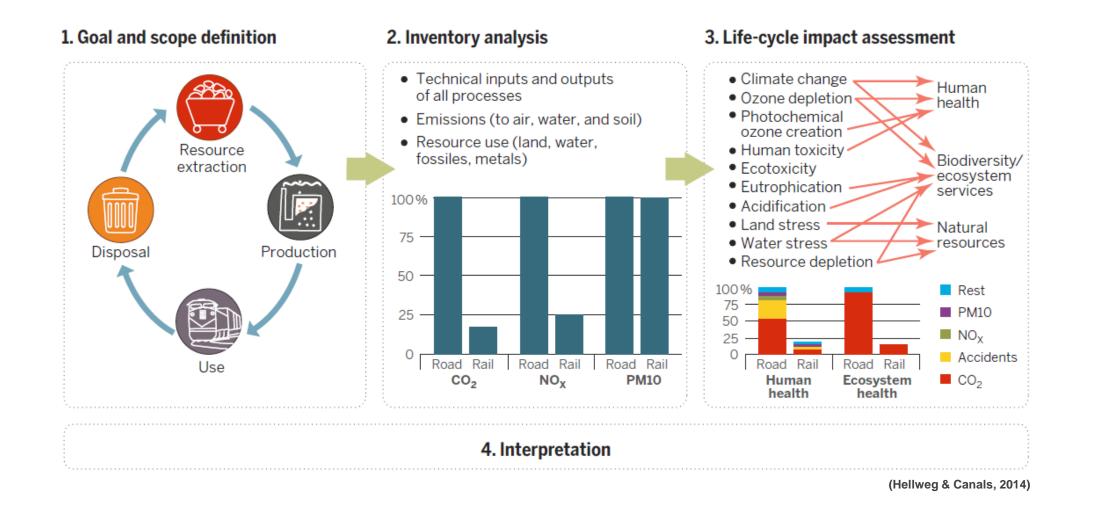
Canelli, Tarnutzer, Carpine, Neutsch, Bolten, Dionisi and Mathys (2020). Front. Nutr. 7:565996.

Environmental sustainability of different microalgae protein sources in comparison (Nutritional impacts are not included)

	DM%	Protein,% of DM	GWP, kg CO ₂ eq.	ozone depletion OD, mg CFC11 eq.	AC, g SO ₂ eq.	EU, g N eq. eutrophication	ED, MJ energy demand fres	FD, m ³	LU, m ² a land use
Soybean meal	87.5 ¹	49.1 ¹	0.34-0.72 1	0.2-0.27 ¹	-1.2 to 3.1 ¹	- 81 to 2 ¹ (g NO ₃ eq.)	5.37 ⁶	0.04 ⁶	3.26 ⁶
Rapeseed cake	89 ¹	34.8 ¹	0.37-0.57 ⁶	$0.004 - 0.05^{6}$	6.8-7.5 ⁶	8.9-9.1 ⁶	3.3-3.8 ⁶	0.001-0.03 ⁶	$1.5 - 1.6^{6}$
Pea protein meal	n/a	n/a	0.44 ⁶ 4–10 ⁸ (pulses)	0.057 ⁶	21.86	7.94 ⁶	5.25 ⁶	0.03 ⁶	2.85 ⁶
Whey concentrate	86–89 ³	60 ^{3,7}	7.48 ⁷ 0.8–7.4 ⁶ 12.1 ² 28–43 ⁸ (kg protein)	3.33 ⁷ 0.01–0.06 ⁹	56.6 ⁷ 0.05–1.5 ⁶	37.3 ² 1.14 ⁶ 3.59–101 ⁹	58.1 ² 83.3 ⁷ 10.7–39.4 ⁶	1.45 ² 9.58 ⁷ 0.003–0.066 ⁶	0.26-8.27 ⁶
Egg protein concentrate	85 ³	80 ³	23.4 ³	1.01 ³	4000 ³	139 ³	183 ³	2.65 ³	40.1 ³
Fishmeal	90 ⁴	60-72 ⁵	0.884 ⁴	1.03 ⁴	18.0 ⁴	- 16 ⁴	15.8 ⁴	0.3474	n/a
Chlorella HTF ³	96	55	14.7	0.9	260.5	40.6	217.1	0.3	4.8
Chlorella ORP ³	96	55	245.1	19.8	1407.5	42.2	4181.3	3.3	1.9
Chlorella TBR ³	96	55	96.1	8.9	1143.0	105.3	1516.2	3.9	5.4
Spirulina ORP ³	96	55	196.3	15.9	1165.0	49.2	3338.3	3.2	1.7
Spirulina TBR ³	96	55	78.1	7.2	915.9	85.3	1225.6	3.3	4.3

Environmental impact comparison of main protein sources used for food and feed (per 1 kg of protein meal or powder).

Sources: ¹ – (Dalgaard et al., 2008); ² – (Kim et al., 2013); ³ – own calculations, ⁴ – Danish LCA Food Database; ⁵ – (Hall, 2011); ⁶ – ecoinvent 3 and Agrifootprint databases; ⁷ – (Smetana et al., 2016); ⁸ – (Nijdam et al., 2012). Note: HTF – heterotrophic fermenter; ORP – open raceway pond; TBR – tubular bioreactor; DM – dry mass, GWP – global warming potential; OD – ozone depletion; AC – acidification; EU – eutrophication; ED – energy demand; FD – freshwater depletion; LU – land use. CFC-11: Trichlorofluoromethane


Smetana et al. 2017

Main protein sources used for meat analogues

Protein	Protein Concentration	PDCAAS	Allergen Risk	Commercial Stage	Flavor	Functionality	Cost (/kg protein)	Global Crop Volume (MMT)		Protein Concentration	PDCAAS	Allergen Risk	Commercial Stage	Flavor	Functionality	Cost (/kg protein)	Global Crop Volume (MMT)
Soy												Usually mild,			Low conc.		
Pea									Excellent	>30%	>0.8	low pop.	Commodity	Flavorless	effect	<\$2	>100
Wheat	•		•						Good	20-30%	0.6-0.79	\$	Large	\$	\$	\$2-4	10-99
Canola			•						ок	10-20%	0.40-0.59	\$	Small	Acceptable	\$	\$5-9	1-9
Chickpea			•						Low	5-10%	0.20-0.39	\$	Start-up	\$	\$	\$10-19	0.1-0.9
Fava Bean			•						Poor	<5%	<0.20	Severe in sig.	R&D	Objectionable	Water	>\$20	<0.1
Lentil			•	•					1 001	1070	40.20	pop.	nab	,-	insoluble	7420	10.11
Lupin	•		•														
Mung Bean			•					•									
Navy Bean				•				•									
Peanut			•	•													
Sunflower																	
Almond			•	•		•		•									
Corn			•			•											
Oat	•			•		•		•									
Potato	•		•														
Quinoa	•			•				•									
Rice	•		•					•									
Sorghum	•					•											

https://gfi.org/resource/plant-protein-primer/

Environmental Life Cycle Assessment LCA Framework with example

