

Consumers' perception of alternative proteins: risk-benefit considerations

Wim Verbeke

Professor of agro-food marketing and consumer behaviour **Ghent University, Belgium**

Content

Innovative food products

Three case studies

- Consumer willingness to adopt **insects** and its determinants
- Barriers vs. motives shaping consumers' willingness to eat cultured meat
- Consumer perception and interest in foods with microalgae proteins

Conclusions

1.

Consumer willingness to adopt **insects** and its determinants

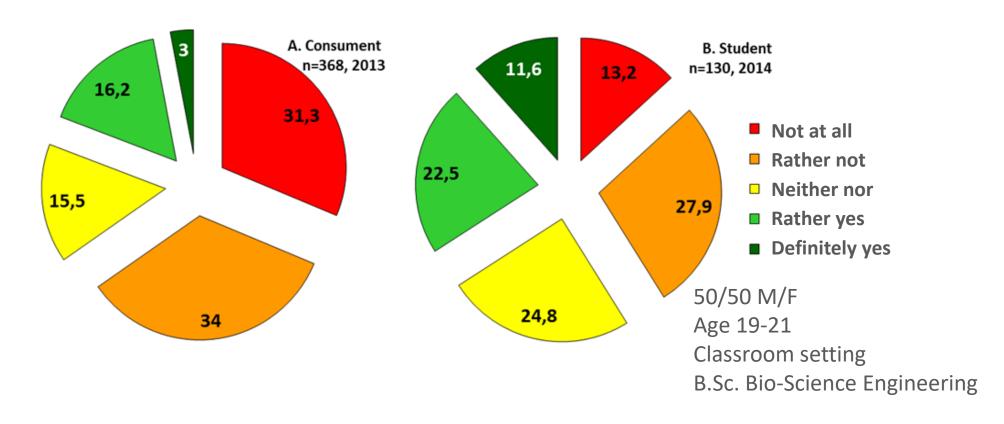
Source: Verbeke (2015) Food Quality and Preference 39

SUMMER SCHOOL

Innovative food products

Survey, sample

- Data collection December 2013
- n = 404, incl. 368 meat consumers
- 39% men; 61% women
- Age 18-79 years; average age 42 years
- Representative for region across five provinces of Flanders (BE)
- 24% with daily meat consumption; 67% several-times-a-week
- 17% planned to reduce meat consumption
- 72% had "ever heard" about the eating of insects



Willingness-to-adopt insects

Innovative food products

Representative sample of consumers vs. Convenience sample of students

Statistical modeling

(%; n=368; 2013; Flanders, Belgium)

Innovative food products

$$\begin{cases} y_i = 1 & \text{if } z_i > 0 \\ y_i = 0 & \text{if } z_i \leq 0 \end{cases}$$

$$p_i = \text{prob} (y_i = 1) = \frac{e^{z_i}}{1 + e^{z_i}} = \frac{e^{\beta 0 + \sum_{k=1}^K \beta_k x_{ki}}}{1 + e^{\beta 0 + \sum_{k=1}^K K \beta_k x_{ki}}} \text{ or }$$

$$\log\left(\frac{pi}{1-pi}\right) = z_i = \beta_0 + \sum_{k=1}^K \beta_k x_{ki} + \varepsilon_i$$

=
$$\beta_0 + \beta_1 \text{ Male}_i + \beta_2 \text{ Age}_i + \beta_3 \text{ Edu}_i + \beta_4 \text{ Fam}_i + \beta_5 \text{ FNS}_i$$

+ $\beta_6 \text{ FTNS}_i + \beta_7 \text{ FHealth}_i + \beta_8 \text{ FConc}_i + \beta_9 \text{ FEnv}_i$

$$+ \beta_{10} \text{ MTate}_i + \beta_{11} \text{ MNutr}_i + \beta_{12} \text{ MRed}_i + \varepsilon_i$$

Willingness to adopt (WTA) insects is modeled as a probability that is determined by personal characteristics, attitudinal and behavioural variables using binary logistic regression.

Logistic regression coefficients and odds ratios indicate the impact of a variable on WTA. Coefficient estimates can be used to calculate probabilities for different profiles of consumers.

Results

(n=368; 2013; Flanders, Belgium)

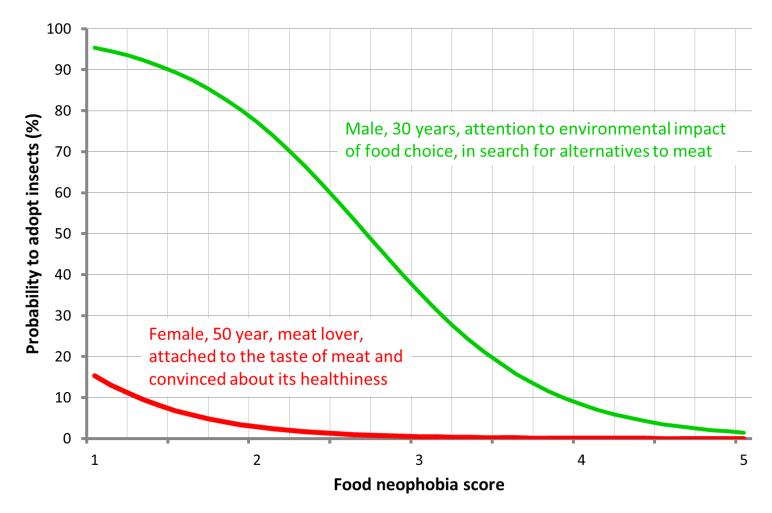
Table 3 Coefficient estimates and diagnostics from binary logistic regression explaining consumers' readiness to adopt insects as a substitute for meat (n = 368).

Variable	β	S.E.	Wald	Sig.	Exp (β)	
Gender (male)	0.774	0.363	4.553	0.033	2.169	
Age	-0.028	0.012	5.256	0.022	0.973	
Education	0.005	0.421	0.000	0.991	1.005	
Fam	0.957	0.447	4.580	0.032	2.604	Familiarity
FNS	-1.811	0.361	25.125	< 0.001	0.164	Food neophobia
FTNS	-0.788	0.252	9.741	0.002	0.455	Food technology neophobia
FHealth	0.416	0.239	3.014	0.083	1.515	Interest in health
FConv	0.557	0.197	7.973	0.005	1.746	Interest in convenience
FEnv	0.539	0.198	7.430	0.006	1.714	Interest in the environment
MTaste	-0.952	0.293	10.580	0.001	0.386	Attachment to meat taste
MNutr	-1.025	0.264	15.024	< 0.001	0.359	Belief meat is nutrition
MRed	1.507	0.389	15.022	0.001	4.512	Intention to reduce meat
Constant	7.999	2.362	11.466	<0.001		

Interpretation

The likelihood of adopting insects as an alternative to meat ...

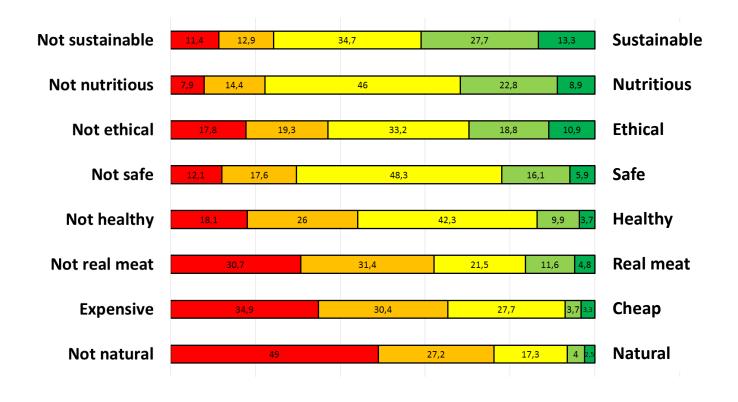
- Is double as large among men compared to women
- Decreases with 27% per 10 years age increase
- Is **4.5** times bigger among people who plan to **reduce meat intake**
- Is 2.6 times bigger among people who have heard about it
- Increases with 75% per unit importance attached to convenience
- ... with **71%** per unit importance attached to **environmental impact**
- Decreases with 84% per unit on the scale of food neophobia
- ... with 55% per unit on the scale of food technology neophobia
- ... with **61-64**% per unit importance attached to the taste of meat and conviction that meat is nutritious and healthy



Simulated probability of willingness to adopt insects

Barriers vs. motives shaping consumers' willingness to eat cultured meat

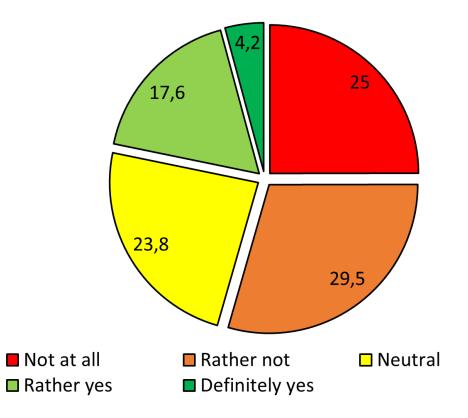
Source: Verbeke, Hung, Baum, & De Steur (2021) Livestock Science 253



Cultured meat attribute perceptions

Innovative food products

To what extent do you believe cultured meat will be..., n=404

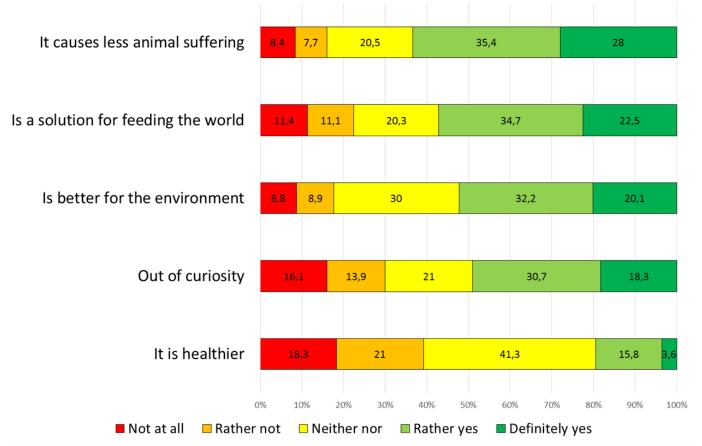


Willingness-to-eat

SUMMER SCHOOL

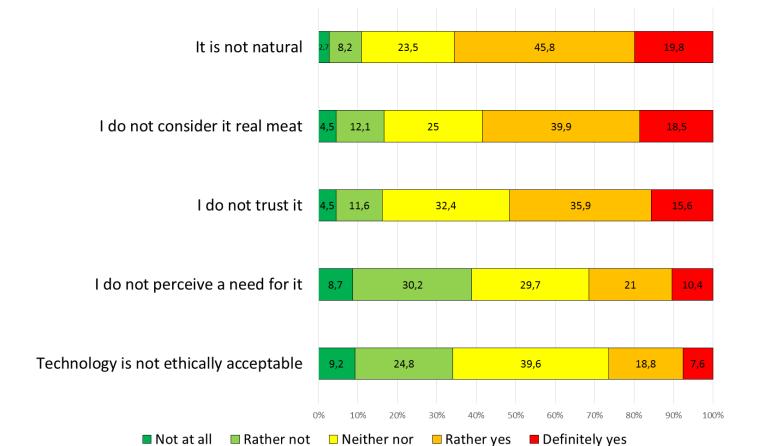
Innovative food products

I would be willing to eat cultured meat as an alternative to conventional meat, n=404



Motives / benefits

Why [one] would consider to eat cultured meat, n=404



Barriers / risks

Why [one] would <u>not</u> consider to eat cultured meat, n=404

SUMMER SCHOOL

Binary logistic modeling results

Innovative food products

Table 3 Descriptive statistics of dependent and explanatory variables (n = 398).

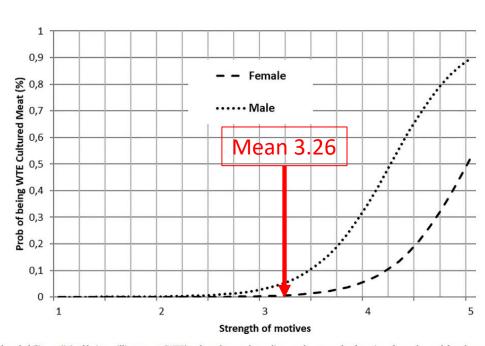
Variable	Label	Mean (S.D.)
Dependent variable (binary)		
Willingness to eat cultured meat (0=no; 1=yes)	CulturedMeat	0.21
Explanatory variables		
Gender (0=female; 1=male)	Male	0.37
Age (years)	Age	40.91 (15.92)
Vegetarian (0=no; 1=yes)	Vegetarian	0.05
Strength of perceived barriers (5-point scale)	Barriers	3.58 (0.91)
Strength of perceived motives (5-point scale)	Motives	3.26 (0.94)
Treatment In-vitro (0=no; 1=yes)	In-vitro	0.33
Treatment Synthetic (0=no; 1=yes)	Synthetic	0.33
Treatment Cultured (0=no; 1=yes)*	Cultured*	0.34

Note: * used as reference category in the binary logistic regression model.

Table 4 Coefficient estimates (β and standard error (S.E.)), diagnostics (Wald statistic and p-value) and odds ratio (Exp(β), OR) from binary logistic regression explaining consumers' willingness to eat cultured meat as a substitute for conventional meat (n=398)

ventional meat $(n = 3)$					
Variable	β	S.E.	Wald	p-value	Exp(β), OR
Gender (male)	2.087	0.513	16.52	< 0.001	8.06
Age	-0.056	0.015	14.63	< 0.001	0.95
Vegetarian	-2.672	1.297	4.24	0.039	0.07
Barriers	-3.412	0.461	54.87	< 0.001	0.03
Motives	2.794	0.469	35.41	< 0.001	16.34
Treatment_In_vitro	0.907	0.527	2.97	0.085	
Treatment_Synthetic	0.199	0.575	0.12	0.729	
Constant	0.384	1.561	0.06	0.806	

Notes: Goodness of fit: Nagelkerke R²=0.75;% correct predictions = 92.0% vs. 79.1% for naive prediction. This binary logistic regression analysis identifies the key factors predicting the likelihood to be willing to eat cultured meat as a substitute for conventional meat (Yes/No). Barriers and motives are based on construct scores for, respectively, the three strongest perceived barriers and motives. Odds ratios (OR) represent the ratio between the probability that a person is willing or not willing to eat cultured meat as a substitute for conventional meat.



Perceived barriers (risks) emerged as being twice as powerful compared to motives (benefits) in shaping consumers' willingness to eat cultured meat $(1/OR_{risks} = 1/0.03 = 33.33; OR_{benefits} = 16.34)$

Fig. 1. Predicted probability p_i (%) of being willing to eat (WTE) cultured meat depending on the strength of motives for males and females and assuming mean values for the other explanatory variables in the model.

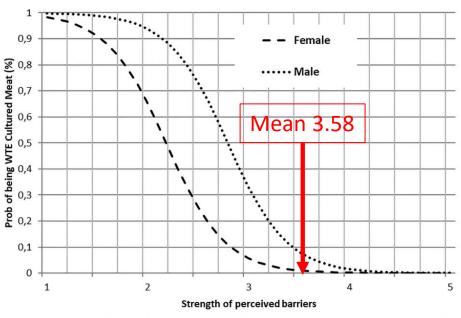


Fig. 2. Predicted probability p_i (%) of being willing to eat (WTE) cultured meat depending on the strength of perceived barriers for males and females and assuming mean values for the other explanatory variables in the model.

3.

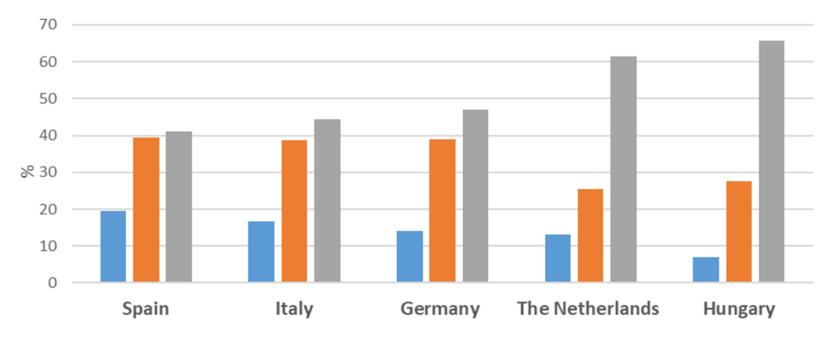
Consumer perception and interest in foods with microalgae proteins

Source: EU H2020 ProFuture

Van der Stricht, Hung, Fischer, Verbeke (2023) in preparation

ProFuture

Microalgae Protein
Ingredients for the Food
and Feed of the Future



Have you ever heard of or tried foods with microalgae proteins (2021, n=3027)

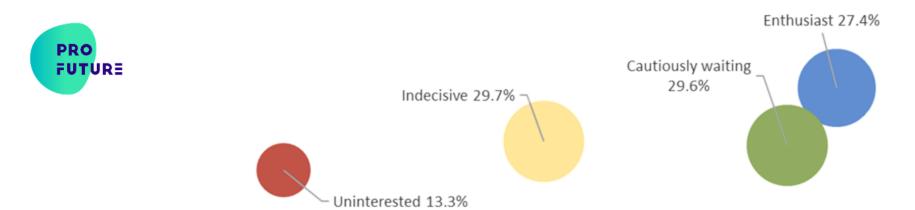
- Yes, I have heard of these products and already tasted them!
- I have heard of such products but never tasted them yet.
- No, I have never heard of these products.

Consumer perception of foods with microalgae proteins (2021, n=3027)

Innovative food products

PRO **FUTURE**

											-
Conventional	4.9 7.3		29.6		25.4		32.8		Innovative		
Unsustainable	4.4 6.5		34.5		29.5			25.2		Sustainable	
Unhealthy	4.2 5.6		36.6		30.1			23.6		Healthy	
Unnatural	7.5 8.3		30.7		27.8			25.7		Natural	•
Cheap	4.2 6.4		36.3		27.6			25.4		Expensive	
Harmful for the environment	4.3 7.2		39.5		27.1		22.0		Environmenta	al frien	
Harmful for human health	5.4	7.4	39.2	2		28.7	,	19	9.3	Beneficial for	huma
Unsafe	5.9	9.6		45.9			23.1		15.6	Safe	
Likely to cause food allergy	8.9	12.0		40.6			22.5		16.0	Unlikely to ca	use fo
Difficult or taking too much	6.5	9.9		46.1			20.9		16.6	Easy or not ta	aking t
Having bad sensory properties	6.1	10.3		47.3			20.0		16.3	Having good	senso
Not tasty	6.4	10.3		49.5			21.5		12.4	Tasty	
Unpleasant	6.5	11.3		50.4			21.	1	10.6	Pleasant	
Highly processed	12	2.4	18.5		43.0		1	16.8	9.3	Unprocessed	
Difficult to find	14	4.5	17.6		45.1			14.6	8.1	Easy to find	



Consumer segments based on willingness to try and attribute perceptions of foods with microalgae proteins (2021, n=3027) (preliminary results)

Increasing

- Food Neophobia
- Food Technology Neophobia

Increasing:

- General Health Interest
- Environmental concern
- Positive perceptions esp. nutrient-related
- Interest in related information

4. Conclusions

- Consumer acceptance of innovative food products cannot be taken for granted.
- Consumer research can shed light on the barriers and motives, perceived risks and benefits.
- A multitude of personal, product-related and environmental factors shape acceptance.
- Food (technology) neophobia emerges often as determinant of acceptance.
- Consumers are not all alike; segments matter.
- Issues pertain to perceived naturalness and ultra-high processing status.

Consumers' perception of alternative proteins: risk-benefit considerations Thanks for your attention

Wim Verbeke

Professor of agro-food marketing and consumer behaviour **Ghent University, Belgium**

Stay connected

Innovative food products

Subscribe to

www.efsa.europa.eu/en/news/newsletters www.efsa.europa.eu/en/rss

Engage with careers

www.efsa.europa.eu/en/engage/careers

Follow us on Twitter

@efsa_eu

@plants_efsa

@methods_efsa

