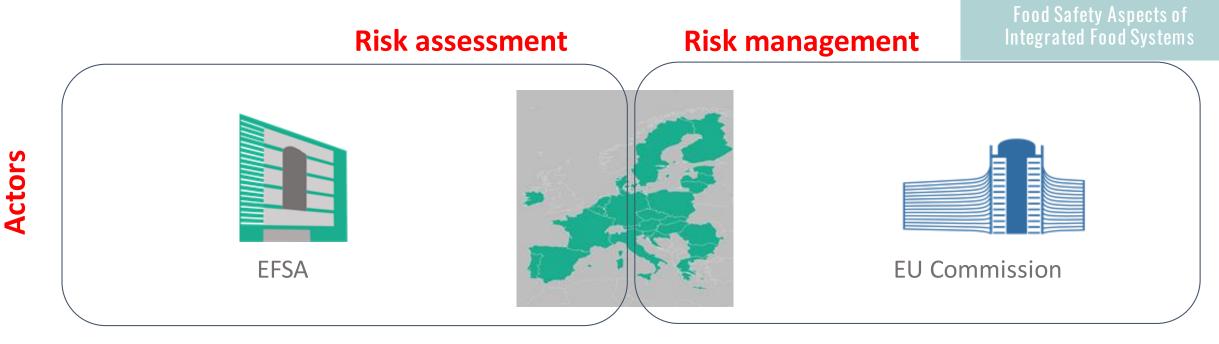


Food Safety Aspects of Integrated Food Systems

28 – 30 SEPTEMBER 2021, Parma

Pesticide risk assessment for bees in the European Union

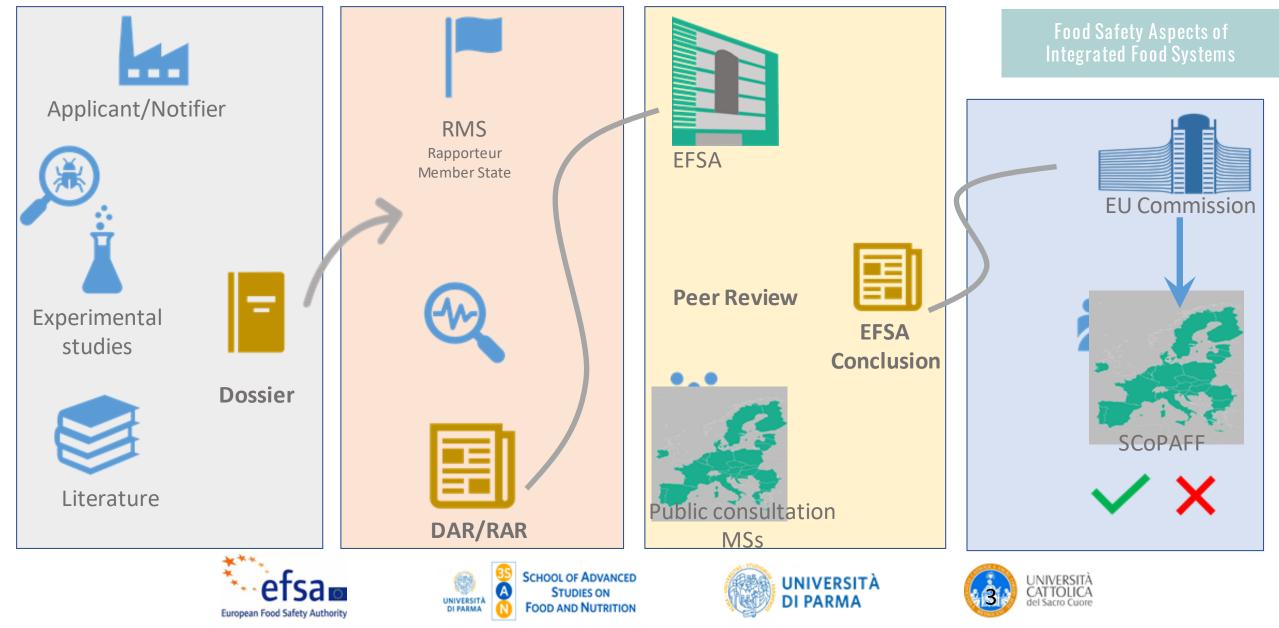
Domenica Auteri Pesticides Peer Review Unit, EFSA



EU regulatory system for pesticides

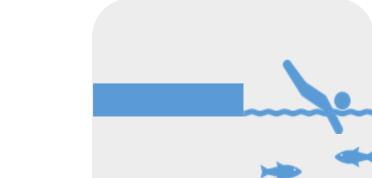
SUMMER SCHOOL

Regulation No 1107/2009 \rightarrow **Authorisation of active substances and PPP (Plant Protection Products)** Regulation (EC) No 396/2005 \rightarrow Regulation on maximum residue levels in food (MRL) Directive 2009/128/EC \rightarrow Sustainable use directive Directive 2008/105/EC | Directive 2013/39/EU \rightarrow Environmental Quality Standard (water env.)



Approval of active substances (Regulation 1107/2009)

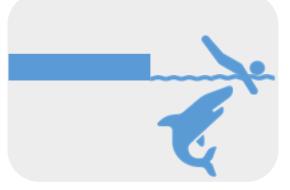
SUMMER SCHOOL


SUMMER SCHOOL

Food Safety Aspects of Integrated Food Systems

A hazard is something that has the potential to harm

Risk is the likelihood of a hazard causing harm


Risk is always determined by both **hazard** and **exposure**

Low hazard, exposure = low risk

High hazard, no exposure = **low risk**

High hazard, exposure = high risk

Risk assessment in ecotoxicology

SUMMER SCHOOL

Food Safety Aspects of Integrated Food Systems

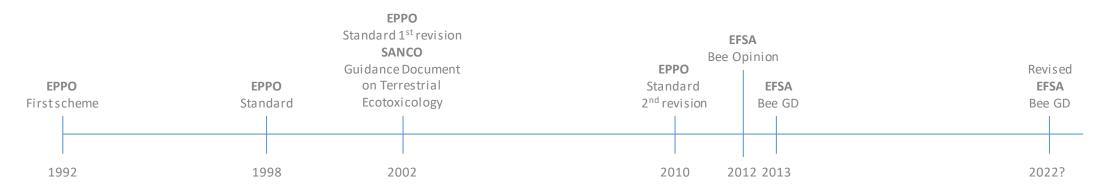
"Dosis sola facit, ut venenum non fit."

"Everything is a poison, nothing is a poison. It is the dose that makes the poison"

Risk is assessed by comparing the **hazard** and the **exposure** that is likely to occur in the environment

Hazard is expressed as a function of the exposure (increasing exposure determines increasing harm) =>Dose-response relationship

Exposure the predicted environmental concentration/quantity



Risk assessment of pesticides for bees: the evolution

SUMMER SCHOOL

Food Safety Aspects of Integrated Food Systems

Risk assessment frameworks

- The regulation accelerated after 2008 \rightarrow concerns on bee decline due to the use of neonicotinoids
- EFSA Bee GD (2013) never accepted by MSs
- Used only for some specific evaluations (e.g. Neonicotinoids, 2018)
- A revision of the EFSA Bee GD is currently ongoing

EFSA bee guidance: three bee groups

SUMMER SCHOOL

Food Safety Aspects of Integrated Food Systems

7

- One species only in Europe (Apis mellifera)
- Large perennial colonies
- One egg-laying queen
- Mostly managed
- Highly structured social system
- Nests contains large reserves of food

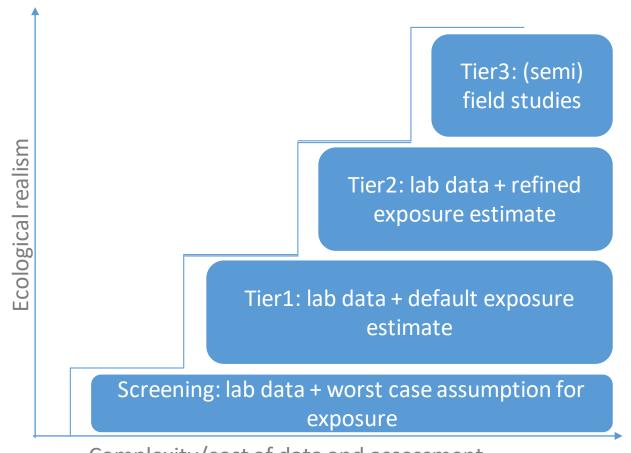
European Food Safety Authorit

Bumble bee

- 68 species in Europe belonging to the same genus (*Bombus*)
- Small annual colonies
- One egg-laying queen that overwinters
- Mostly wild
- Eusocial, but with limited structure
- Limited food storage in the

nest

School of Advanced Studies on Food and Nutrition



- ~ 1900 species in Europe
- Taxonomically diverse group
- Not eusocial (no colonies)
- All females lay (a limited number of) eggs
- Mostly wild
- Provision nests only once

The principles of the tiered assessment

SUMMER SCHOOL

Food Safety Aspects of Integrated Food Systems

Complexity/cost of data and assessment

Every assessment starts from the bottom and only moves to the next step if a potential for high risk is identified.

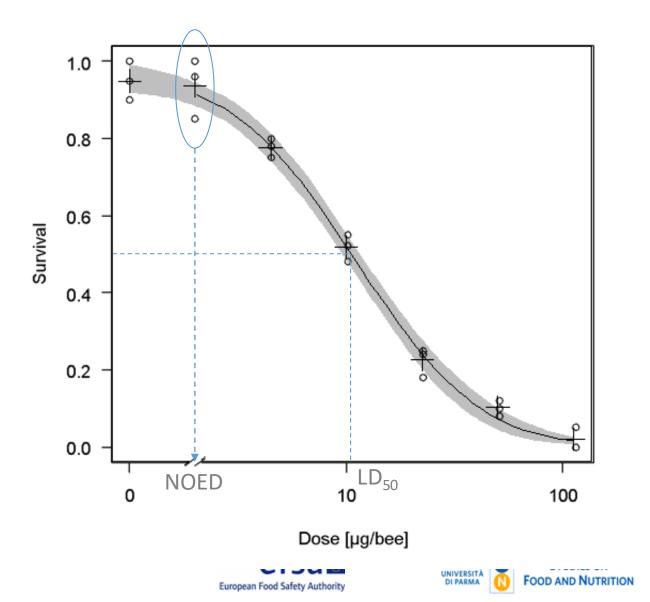
Main principle: the more likely that a certain use of a substance is safe, the less data and assessments are required.

Hazard characterisation: lab studies

- Acute oral toxicity test for honey bees (OECD 213)
- Acute contact toxicity test for honey bees (OECD 214)
- Chronic oral toxicity test for honey bees (OECD 245)
- Honey Bee Larval Toxicity Test following Repeated Exposure (OECD GD 239)
- Acute oral toxicity test for bumble bees (OECD 247) B.terrestris
- Acute contact toxicity test for bumble bees (OECD 246) B.terrestris

SUMMER SCHOOL

- Young bees are collected and kept in cages; larvae are kept in grafting cells
- 3 batches of 10 bees per tested concentration
- At least 5 concentration levels
- Bees are fed with contaminated sugar solution (oral) or a drop of the solution containing the substance is applied to the thorax of the bee (contact)
- Validity is linked to the survival of control bees above certain thresholds and to the sensitivity of the system checked with a toxic standard



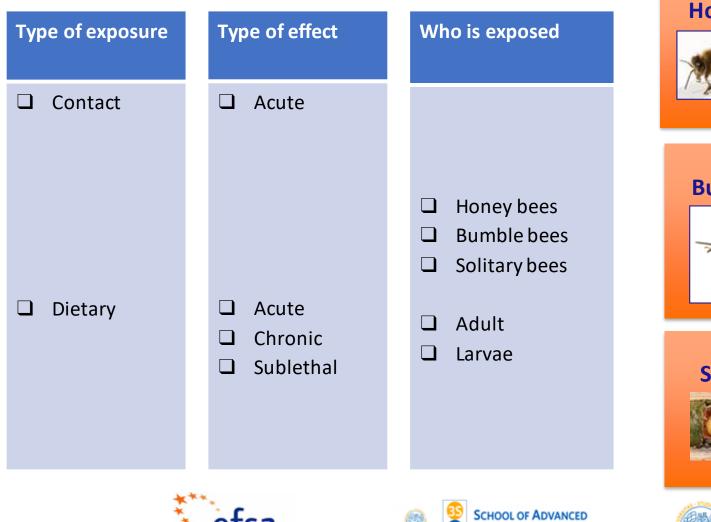
Hazard characterisation: dose-response

SUMMER SCH

- At the end of the test, the number of bees still alive at every dose group is counted
- The maximum dose showing no significant survival decrease compared to the control is the NOED (No Observed Effect Dose)
- A sigmoidal model is fitted to the survival at each dose
- The dose corresponding to the expected 50% mortality is the LD₅₀ (Lethal Dose for 50% of individuals) in the acute tests or the LDD₅₀ (Lethal Daily Dose for 50% of individuals) in chronic tests

Environmental exposure: Sources of Exposure

SUMMER SCHOOL



Environmental exposure: routes of exposure

European Food Safety Authority

STUDIES ON

FOOD AND NUTRITION

А

UNIVERSITÀ DI PARMA

Bumble bee

UNIVERSITÀ

DI PARMA

Exposure estimate: contact

- The exposure model for contact is very simple
- Assumes that the amount of substances that a bee will enter in contact with is only proportional to:
 - The application rate (mass of substance per area)
 - The fraction of the application rate that is deposited on the target surface

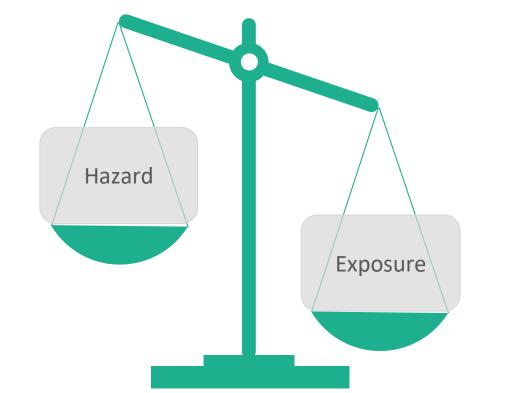
 $Exposure = Application rate * f_{dep}$

 f_{dep} = 1 in-field and <1 off-field (dust/spray) drift

Exposure estimate: oral (pollen and nectar)

- The exposure model for oral is more complex
- It considers:
 - The application rate (AR)
 - An exposure factor (*Ef*, similar to the f_{dep})
 - A Time-Weighted Average factor (*fTWA*, only applicable to chronic exposure), which accounts for the dissipation of the chemical in time
 - The residues on pollen and nectar of the chemical (*RUD* = Residues per Unit Dose)
 - The standard consumption of pollen (CONS_p) and sugar (CONS_s)
 - The sugar content of nectar (m_s)

$$Exposure = AR * Ef * fTWA * SV$$
$$SV = \frac{RUD_p * CONS_p + RUD_n * \frac{CONS_{sugar}}{m_s}}{1000}$$



Risk characterisation

- The principle of the risk characterisation is always the comparison of the predicted exposure in the environment and the hazard (i.e. the concentration triggering a certain known effect)
- Such comparison is always performed via a simple ratio, generally called risk quotient
- The risk quotient can be called ETR (Exposure/Toxicity Ratio) or TER (Toxicity/Exposure Ratio). ETR is equivalent to HQ (Hazard Quotient)

SUMMER SCHOOL

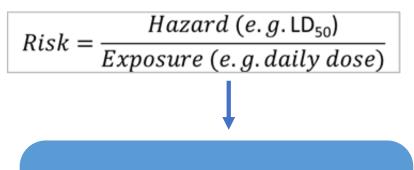
The concept of Specific Protection Goal

Regulation 1107 gives a **General protection goal**: *'no unacceptable effects on environment, ecosystems, biodiversity'*

=>Specific Protection Goals (SPGs) based on ecosystem services.

Require the definition of 5 dimensions:

Dimension	Bees (EFSA, 2013)	
Ecological entity	colonies for honey bees and bumble bees, population for solitary bees	
Attribute	colony strength/population abundance (=number of adult bees)	
Spatial scale	edge of the field	
Temporal scale	not explicitly defined (=any time)	
Magnitude of acceptable effects	<10%	



Risk characterisation: trigger values

SUMMER SCHOOL

Food Safety Aspects of Integrated Food Systems

Possible interpretation:

If predicted exposure < the hazard (i.e. $LD_{50,LDD_{50}}$) \rightarrow the pesticide is likely not killing 50% of the bees in the field

- This interpretation:
 - Does not account for colony/population dynamics
 - It doesn't help addressing whether protection goals have been maintained
- The risk characterisation needs a "reference point" to make explicit whether the specific protection goal is met or not
- This reference point is a set of trigger values, that the risk quotient is compared to
- The trigger values translate standard endpoints (e.g. LD50, LDD50) into effects on colony strength/population abundance, considering the predicted exposure

Risk Quotient < trigger =>low risk Risk Quotient>trigger => high risk

Use	Value	<u>Contact (acute)</u>	
Oilseed rape (OSR),	200 g/ha = 0.2 kg/ha	Exposure = AR $*$ fdep = 200	0
BBCH 50-70		Risk (HQ=ETR) = 200/57 =	3.5
		Trigger = 42	
Endpoint	Value	$HQ < Trigger \rightarrow Low risk$	
Acute contact LD50	57 µg a.s./bee		
Acute oral LD50	75 µg a.s./bee	<u>Oral (acute)</u>	
Chronic oral LDD50	8 µg a.s./bee/day	Exposure = AR [kg/ha] * Ef	* fTWA * SV
Larvae NOED	55 µg a.s./larva/dev.	=	
	period	0.2*1* 7.6 *1 = 1.52	
		Risk (ETR) = 1.52/75 = 0.0	2
Treated field scenario		Trigger= 0.2	
		$ETR{<}Trigger \to \textbf{Low risk}$	
European Food Safety Authority	UNIVERSITÀ DI PARMA	UNIVERSITÀ DI PARMA	UNIVERSITÀ CATTOLICA del Sacro Cuore

SUMMER SCHOOL

Use	Value	<u>Oral (chronic)</u>		
Oilseed rape (OSR),	200 g/ha = 0.2 kg/ha	Exposure = AR [kg/ha] * Ef * f	WA * SV =	
BBCH 50-70		0.2*1* 5.8*0.72 = 0.835		
		Risk (ETR) = 0.835/8 = 0.104		
Endpoint	Value	Trigger= 0.03		
Acute contact LD50	57 µg a.s./bee	$ETR>Trigger \rightarrow High risk$		
Acute oral LD50	75 µg a.s./bee			
Chronic oral LDD50	8 µg a.s./bee/day	Larvae Exposure = AR [kg/ha] * Ef * fTWA * SV =		
Larvae NOED	55 µg a.s./larva/dev. period	0.2*1*4.4*0.85 = 0.748	WA SV -	
Treated field scenario		Risk (ETR) = $0.748/55 = 0.01$ Trigger= 0.2 ETR <trigger <math="">\rightarrow Low risk</trigger>		

Tier 2 - Exposure refinement

SUMMER SCHOOL

- If at the tier1 a high risk cannot be excluded, more data are needed
- One possibility is to refine the residues in pollen and nectar following the specific use of the substance
 - Residues can be measured from pollen and nectar sampled directly from the treated plants (worst-case) or let bees sample and then 'steal' samples from them (landscape dilution can occur)
 - If the second method is used, the results are species-specific
 - For avoiding best-case situations, other alternative food sources should be kept minimal (e.g. no bee attractive crop in a 2 km radius)
 - At least 5 independent trials
- Another possibility is to refine the half-life of the substance being investigated

Tier 3: higher tier studies

SUMMER SCHOOL

Food Safety Aspects of

- Tier 3 (higher tier) studies are characterised by:
 - a high degree of ecological realism
 - a high cost
 - a high complexity in terms of results
- If the exposure is appropriate, they can be immediately use to estimate the risk
- There are three main types of higher tier studies:
 - Semi-field (tunnel) studies
 - Feeder studies
 - Field studies

Tier 3: semi-field studies

Principles

- Bees (hive/nesting units) are released into a tunnel where the only source of food is the treated crop
- The crop is generally treated beforehand
- It is often performed with bee-attractive crops

Disadvantages

- Bees (especially honey bees) are stressed
- Cannot last more than a few days (<10)
- Can only use small hives/nests

European Food Safety Authorit

School of Advanced

STUDIES ON

FOOD AND NUTRITION

DI PARMA

UNIVERSITÀ DI PARMA

22

Food Safety Aspects of

Food Safety Aspects of Integrated Food Systems

Advantages

- It requires a limited area per independent replicate
- Exposure is worst-case (more likely to be in line with the exposure assessment goal)

Tier 3: feeder studies

Principles

- Bees (hive/nesting units) are in proximity of a feeder, generally containing contaminated sugar syrup
- It can be coupled with contaminated pollen pellets
- Sometimes the feeder is within the hive structure
- It is often performed in absence of significant alternative food sources

Integrated Food Systems

Disadvantages

- It alters the normal foraging behavior of bees
- Energetic balance is unnatural
- Effects on some sub-lethal effects can be masked

Advantages

- Very good control on exposure levels
- Several doses can be tested (dose-exposure relationship at the colony level)
- Does not need big areas

JNIVERSITÀ

Tier 3: field studies

Principles

- Bees (several hive/nesting units) are in proximity of a treated field, during the bloom of the crop
- Treatment may happen during bloom or before, according to the intended use
- It is often performed in absence of significant alternative food sources

Disadvantages

- Many potential confounding factors
- Exposure may be substantially less than the goal
- Requires large areas for replication

SUMMER SCHOOL

Food Safety Aspects of Integrated Food Systems

Advantages

- The highest possible level of realism
- Immediately interpretable as quantification of risk
- Monitoring can last very long time

UNIVERSITÀ CATTOLICA del Sacro Cuore

SUMMER SCHOOL

