

Universität für Bodenkultur Wien

University of Natural Resources and Life Sciences, Vienna

Ecological Vulnerability Analysis for Gene Drives A prospective assessment

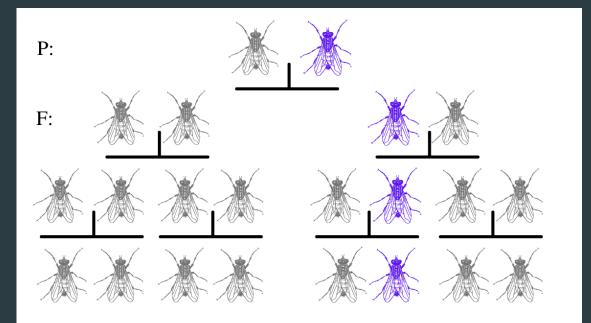
PhD Student: Lalyer Carina Roberta

Supervisors: Prof. Liebert Wolfgang, Dr. Giese Bernd

Contents

Gene drives

Molecular genome editing tools able to bias normal Mendelian inheritance (50:50)


• Ability to be inherited over generational time at increased frequencies <u>despite lowering the</u> <u>organisms' fitness</u> (Champer et al., 2016)

Modification or suppression drives

• Modify, insert and/or delete genes (Burt, 2003)

A desired gene will be transmitted in the whole population within a few generations

Applied to sexually reproducing organisms with short generation time (insects, rodents)

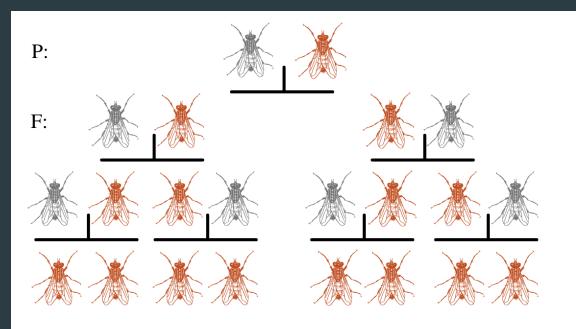


Illustration of a Mendelian inheritance, the offspring (F)have a 50% chance to inherit a copy of the gene from the parents (P) Illustration of super-Mendelian inheritance where the offspring (F) have a 100% chance to inherit a copy of the gene from the parents (P)

Public health

• <u>Control/eradicate</u> diseases by altering the organisms that carry or cause the disease

Agriculture

• <u>Control/eradicate</u> organisms that damage crops

Conservation

• <u>Control/eradicate</u> invasive species

Research

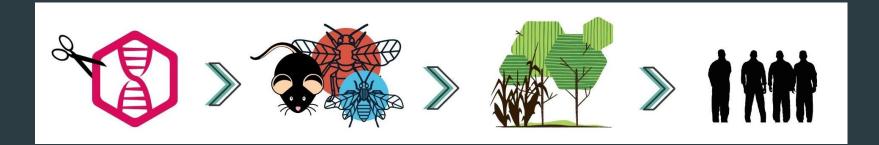
• <u>Alter</u> organisms to research the effects of gene drives

Challenges of the application

Depth of intervention (power and range of the technology)

•Residence time (perseverance and invasiveness) designed to spread

•Confinement- geographical and species Locally confined and species specific drives under development BUT uncertain, horizontal gene transfer


•Step-by-step release

Field trial could be irreversible

•Recall, rescue drives

Uncertainty

- •Knowledge gaps
- •Delayed effects
- •Mutations, unforeseen recombination
- •Rare mating events
- •Horizontal gene transfer
- •Behavioural change

Gene drives in Risk Assessment

- In the EU gene drives fall under the GMO Directives 2001/18/EC, 2015/412
- Approval authority EFSA- November 2020 Opinion report on adequacy and sufficiency for EFSA regulations on insects engineered with gene drives

Summary

The European Commission has requested the European Food Safety Authority (EFSA) to assess, through a problem formulation exercise, whether: (1) the deliberate release of genetically modified organisms (GMOs) containing engineered gene drives (termed hereafter as gene drive modified organisms [GDMOs]) could pose risks and potential novel hazards to human/animal health and the environment, considering relevant comparators; (2) the scientific considerations/requirements given in its previously published guidelines for the risk assessment of genetically modified animals (GMAs) (EFSA, 2012, 2013) are adequate and sufficient for GDMOs; and (3) there is a need for updated guidance in relation to previous documents (EFSA, 2012, 2013). Under this mandate, EFSA was not requested to develop risk assessment guidelines for GDMOs.

Fragment of the summary of EFSA Panel on GMOs 2020. Adequacy and sufficiency evaluation of existing EFSA guidelines for the molecular characterisation, environmental risk assessment and post-market environmental monitoring of genetically modified insects containing engineered gene drives

Prospective assessment

Ecological Vulnerability analysis

Current regulation provides scope for a broader range of prospective analysis

Broaden the scope of the classical risk assessment to include socioeconomic, ethic and legal aspects into the research when considering the effects of a new technology

Given the depth of intervention, there is a need to understand vulnerabilities across systems

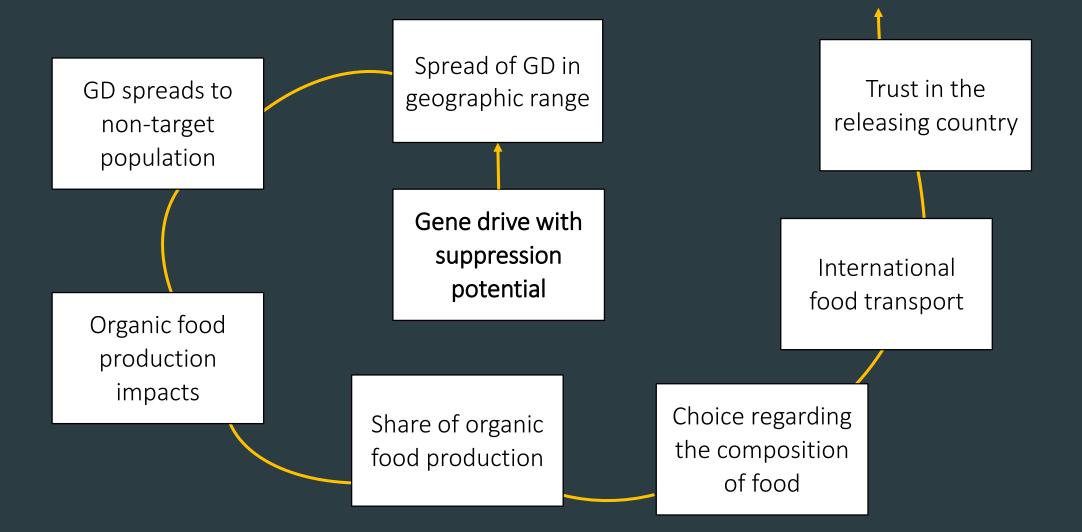
Ecological Vulnerability Analysis (eVA)

A priori analysis to determine the ecosystem's weaknesses and it's adaptive capacity

It is a function of exposure, sensitivity and adaptive capacity

The analysis of a vulnerable ecosystem requires investigations at different levels:

- species characterization,
- species' genetics
- species-environment interactions,
- abiotic elements
- landscape



Elements of eVA. Adapted after Adger, 2006; De Lange et al., 2010; Gößling-Reisemann et al., 2013; IPCC, 2007, p. 27

System-based approach

	Potential i	mpact		Vulnerability
Exposure		Sensitivity		Adaptive Capacity
Relevant qualities of the affected ecosystem	Relevant qualities of the affected target species	Ecosystem level	Species level	Relevant qualities of the affected ecosystem and
Distribution of adequate habitat conditions	Habitat choice Biology and ecology of the target species	Structural biodiversity Key functional traits of the species in the	Genetic diversity of the target species Other pressures on the	target speciesGenetic variabilitySpecies ability to reproduceSpecies ability to digname
Biogeographical barriers Distribution of food	Seasonal influence on the population	ecosystem Species redundancy within functional groups	species populationHuman pressuresClimatic change	
Sources Density of species	Gene flow in the target population Rapideness of the GD to	Trophic relationships within the community		disperse Response diversity within functional
population	spread in the target population	Emergent properties within the community		groups Biodiversity
	Dispersal ability of the GDOs	Other pressures on the ecosystem • Seasonal climatic		
D= gene drive DO= gene drive	Potential of the GD to affect non-target populations	influenceImpact of climate change over time		
rganism	Potential of the GDO to hybridize	Illustration adapted from Lalyer et al. 2020. Conceptual framework a Lange et al. 2010, Moro et al. 2017, Weißhuhn et al. 2018		

In what ways can gene drives become socio-economically relevant?

Case study

Drosophila suzukii (Matsumura, 1931)

- fruit fly native to East Asia
- invasive pest of stone and berry fruits
- gene drive was recently developed for it by Buchman et al. (2018)
- closely related species: D. pulchrella, D. subpulchrella (possible competitors)
- Specialized parasitoids: the "suzukii-specialised" type of Ganaspis xanthopoda, Asobara sp. TK1 type

Creative Commons (https://www.flickr.com) by Martin Cooper

Suppression of non-target (native) population of Drosophila suzukii

Take home message

- •Gene drives have potential novel negative impacts at the ecosystem and societal level
- •There is a need for a system-based and prospective approach
- •As early as possible in the stage of the technology
- •Ecological vulnerability analysis can be a complimentary approach to:
 - Take into account the exposure, sensitivity and adaptive capacity of an ecosystem
 - Uncover knowledge gaps
 - understand the susceptibility of an ecosystem to potentially unintended and irreversible harm
 - Reveal the potential cascading effects to the societal level

Thank you for your attention

Selected bibliography

Adger, W.N., 2006. Vulnerability. Global Environmental Change 16, 268–281. https://doi.org/10.1016/j.gloenvcha.2006.02.006

Buchman, A., Marshall, J.M., Ostrovski, D., Yang, T., Akbari, O.S., 2018. Synthetically engineered Medea gene drive system in the worldwide crop pest Drosophila suzukii. Proc. Natl. Acad. Sci. 201713139. <u>https://doi.org/10.1073/pnas.1713139115</u>

Burt, A., 2003. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc. R. Soc. B Biol. Sci. 270, 921–928. https://doi.org/10.1098/rspb.2002.2319

Champer, J., Buchman, A., Akbari, O.S., 2016. Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat. Rev. Genet. 17, 146–159. <u>https://doi.org/10.1038/nrg.2015.34</u>

Courtier-Orgogozo, V., Danchin, A., Gouyon, P., Boëte, C., 2020. Evaluating the probability of CRISPR-based gene drive contaminating another species. Evol. Appl. 13, 1888–1905. <u>https://doi.org/10.1111/eva.12939</u>

De Lange, H.J., Sala, S., Vighi, M., Faber, J.H., 2010. Ecological vulnerability in risk assessment — A review and perspectives. Sci. Total Environ. 408, 3871–3879. <u>https://doi.org/10.1016/j.scitotenv.2009.11.009</u>

EFSA Panel on Genetically Modified Organisms (GMO), Naegeli, H., Bresson, J., Dalmay, T., Dewhurst, I.C., Epstein, M.M., Guerche, P., Hejatko, J., Moreno, F.J., Mullins, E., Nogué, F., Rostoks, N., Sánchez Serrano, J.J., Savoini, G., Veromann, E., Veronesi, F., Bonsall, M.B., Mumford, J., Wimmer, E.A., Devos, Y., Paraskevopoulos, K., Firbank, L.G., 2020. Adequacy and sufficiency evaluation of existing EFSA guidelines for the molecular characterisation, environmental risk assessment and post-market environmental monitoring of genetically modified insects containing engineered gene drives. EFSA J. 18. <u>https://doi.org/10.2903/j.efsa.2020.6297</u>

Frieß, J.L., von Gleich, A., Giese, B., 2019. Gene drives as a new quality in GMO releases—a comparative technology characterization. PeerJ 7, e6793. https://doi.org/10/ggfwhb

Girod, P., Borowiec, N., Buffington, M., Chen, G., Fang, Y., Kimura, M.T., Peris-Felipo, F.J., Ris, N., Wu, H., Xiao, C., Zhang, J., Aebi, A., Haye, T., Kenis, M., 2018. The parasitoid complex of D. suzukii and other fruit feeding Drosophila species in Asia. Scientific Reports 8. <u>https://doi.org/10.1038/s41598-018-29555-8</u>

Gößling-Reisemann, S., Wachsmuth, J., Stührmann, S., von Gleich, A., 2013. Climate Change and Structural Vulnerability of a Metropolitan Energy System: The Case of Bremen-Oldenburg in Northwest Germany. Journal of Industrial Ecology 17, 846–858. <u>https://doi.org/10.1111/jiec.12061</u>

IPCC, 2007. Climate change 2007: impacts, adaptation and vulnerability: contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K.; New York.

Lalyer, Carina R., von Gleich, A., Giese, B., 2020. Vulnerability Analysis of Ecological Systems, in: von Gleich, A., Schröder, W. (Eds.), Gene Drives at Tipping Points. Springer International Publishing, Cham, pp. 57–77. https://doi.org/10.1007/978-3-030-38934-5_3

Moro, D., Byrne, M., Kennedy, M., Campbell, S., Tizard, M., 2018. Identifying knowledge gaps for gene drive research to control invasive animal species: The next CRISPR step. Global Ecology and Conservation 13, e00363. https://doi.org/10.1016/j.gecco.2017.e00363

Weißhuhn, P., Müller, F., Wiggering, H., 2018. Ecosystem Vulnerability Review: Proposal of an Interdisciplinary Ecosystem Assessment Approach. Environ. Manage. 61, 904–915. https://doi.org/10.1007/s00267-018-1023-8